Patents by Inventor Mingde Xu

Mingde Xu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11691132
    Abstract: A modified Y-type molecular sieve has a rare earth content of about 4% to about 11% by weight on the basis of the oxide, a phosphorus content of about 0.05% to about 10% by weight on the basis of P2O5, a sodium content of no more than about 0.5% by weight on the basis of sodium oxide, a gallium content of about 0.1% to about 2.5% by weight on the basis of gallium oxide, and a zirconium content of about 0.1% to about 2.5% by weight on the basis of zirconia; and the modified Y-type molecular sieve has a total pore volume of about 0.36 mL/g to about 0.48 mL/g, a percentage of the pore volume of secondary pores having a pore size of 2-100 nm to the total pore volume of about 20% to about 40%.
    Type: Grant
    Filed: August 15, 2019
    Date of Patent: July 4, 2023
    Assignees: CHINA PETROLEUM & CHEMICAL CORPORATION, RESEARCH INSTITUTE OF PETROLEUM PROCESSING, SINOPEC
    Inventors: Lingping Zhou, Qiuqiao Jiang, Shuai Yuan, Hao Sha, Mingde Xu, Zhenyu Chen, Weilin Zhang, Huiping Tian
  • Patent number: 11541377
    Abstract: A modified Y-type molecular sieve has a rare earth content of about 4-11% by weight on the basis of rare earth oxide, a sodium content of no more than about 0.5 wt % by weight on the basis of sodium oxide, a zinc content of about 0.5-5% by weight on the basis of zinc oxide, a phosphorus content of about 0.05-10% by weight on the basis of phosphorus pentoxide, a framework silica-alumina ratio of about 7-14 calculated on the basis of SiO2/Al2O3 molar ratio, a percentage of non-framework aluminum content to the total aluminum content of no more than about 10%, and a percentage of the pore volume of secondary pores having a pore size of 2-100 nm to the total pore volume of about 20-40%. The modified Y-type molecular sieve has a high crystallinity and a high thermal and hydrothermal stability, and is rich in secondary pores.
    Type: Grant
    Filed: August 20, 2019
    Date of Patent: January 3, 2023
    Assignees: CHINA PETROLEUM & CHEMICAL CORPORATION, RESEARCH INSTITUTE OF PETROLEUM PROCESSING, SINOPEC
    Inventors: Hao Sha, Lingping Zhou, Shuai Yuan, Weilin Zhang, Zhenyu Chen, Mingde Xu, Huiping Tian
  • Patent number: 11517887
    Abstract: A modified Y-type molecular sieve has a rare earth content of about 4% to about 11% by weight on the basis of the oxide, a phosphorus content of about 0.05% to about 10% by weight on the basis of P2O5, a sodium content of no more than about 0.5% by weight on the basis of sodium oxide, and an active element content of about 0.1% to about 5% by weight on the basis of the oxide, with the active element being gallium and/or boron. The modified Y-type molecular sieve has a total pore volume of about 0.36 mL/g to about 0.48 mL/g, a percentage of the pore volume of secondary pores having a pore size of 2-100 nm of about 20% to about 40%; a lattice constant of about 2.440 nm to about 2.455 nm, and a lattice collapse temperature of not lower than about 1060° C.
    Type: Grant
    Filed: August 15, 2019
    Date of Patent: December 6, 2022
    Assignees: CHINA PETROLEUM & CHEMICAL CORPORATION, RESEARCH INSTITUTE OF PETROLEUM PROCESSING, SINOPEC
    Inventors: Lingping Zhou, Hao Sha, Mingde Xu, Weilin Zhang, Shuai Yuan, Zhenyu Chen, Qiuqiao Jiang, Huiping Tian
  • Publication number: 20220184589
    Abstract: The catalytic cracking catalyst contains a molecular sieve and an alumina substrate material. The alumina substrate material has a crystalline phase structure of ?-alumina. Based on the volume of pores with a diameter of 2-100 nm, the pore volume of the pores with a diameter of 2-5 nm accounts for 0-10%, the pore volume of the pores with a diameter of more than 5 nm and not more than 10 nm accounts for 10-25%, and the pore volume of the pores with a diameter of more than 10 nm and not more than 100 nm accounts for 65-90%.
    Type: Application
    Filed: March 26, 2020
    Publication date: June 16, 2022
    Inventors: Jiexiao ZHANG, Shanqing YU, Mingde XU, Jiasong YAN, Huiping TIAN, Jiaxing LI, Min YANG
  • Publication number: 20220138798
    Abstract: A method, system, and apparatus provide the ability to personalize a digital channel. A digital channel is provided to multiple users and visitor information at each visit is collected. The visitor information includes data about each visit and multiple content items that are presented. The users are autonomously clustered by segmenting the user population into behavioral groups such that mutual information is maximized between the users in an assigned behavioral group and the content items. Based on the clustering, a model is generated that estimates a score for each interaction between users and content items. The model is updated at a defined interval. Based on the score, content items to recommend to a specific user are determined. The recommendation jointly maximizes an outcome and a learning speed of the model. The personalized digital channel is delivered to the specific user based on the recommended multiple content items.
    Type: Application
    Filed: October 30, 2020
    Publication date: May 5, 2022
    Applicant: Sitecore Corporation A/S
    Inventors: Marc Perreau Guimaraes, Tetiana Kostenko, Samira Sadeghi, Mingde Xu, Abhishek Soni, Romeo B. Valencia, Nancy Huei-Jiun Lee
  • Patent number: 11130917
    Abstract: A modified Y-type molecular sieve has a rare earth content of about 4-11% by weight on the basis of rare earth oxide, a sodium content of no more than about 0.7% by weight on the basis of sodium oxide, a zinc content of about 0.5-5% by weight on the basis of zinc oxide, a phosphorus content of about 0.05-10% by weight on the basis of phosphorus pentoxide, a framework silica-alumina ratio of about 7-14 calculated on the basis of SiO2/Al2O3 molar ratio, a percentage of non-framework aluminum content to the total aluminum content of no more than about 20%, and a percentage of the pore volume of secondary pores having a pore size of 2-100 nm to the total pore volume of about 15-30%. The modified Y-type molecular sieve has a high crystallinity, a structure comprising secondary pores, and a high thermal and hydrothermal stability.
    Type: Grant
    Filed: August 20, 2019
    Date of Patent: September 28, 2021
    Assignees: CHINA PETROLEUM & CHEMICAL CORPORATION, RESEARCH INSTITUTE OF PETROLEUM PROCESSING, SINOPEC
    Inventors: Hao Sha, Lingping Zhou, Shuai Yuan, Weilin Zhang, Zhenyu Chen, Mingde Xu, Huiping Tian
  • Patent number: 11053129
    Abstract: A magnesium modified Y-type molecular sieve has a rare earth oxide content of about 4% to about 11% by weight, a magnesium oxide content of about 0.1% to about 4% by weight, a sodium oxide content of about 0.3% to about 0.8% by weight, a total pore volume of about 0.33 mL/g to about 0.39 mL/g, a percentage of the pore volume of secondary pores having a pore size of 2-100 nm to the total pore volume of the modified Y-type molecular sieve of about 10% to about 30%, a lattice constant of about 2.440 nm to about 2.455 nm, a percentage of non-framework aluminum content to the total aluminum content of the modified Y-type molecular sieve of no more than about 20%, and a lattice collapse temperature of not lower than about 1045° C.
    Type: Grant
    Filed: February 12, 2018
    Date of Patent: July 6, 2021
    Assignees: CHINA PETROLEUM & CHEMICAL CORPORATION, RESEARCH INSTITUTE OF PETROLEUM PROCESSING, SINOPEC
    Inventors: Lingping Zhou, Weilin Zhang, Mingde Xu, Zhenyu Chen, Huiping Tian, Yuxia Zhu
  • Patent number: 11052381
    Abstract: A modified Y-type molecular sieve has a rare earth oxide content of about 4% to about 12% by weight, a phosphorus content of about 0% to about 10% by weight, a sodium oxide content of no more than about 1.0% by weight, a total pore volume of about 0.36 to 0.48 mL/g, a percentage of the pore volume of secondary pores to the total pore volume of about 20% to about 40%, a lattice constant of about 2.440 nm to about 2.455 nm, a percentage of the non-framework aluminum content to the total aluminum content of no more than about 10%, a lattice collapse temperature of not lower than about 1060° C., and a ratio of Brønsted acid to Lewis acid of no less than about 3.50. The preparation of the molecular sieve includes ion-exchange with rare earth, hydrothermal roasting, gas phase ultra-stabilization, acid treatment, and an optional phosphorus modification.
    Type: Grant
    Filed: February 12, 2018
    Date of Patent: July 6, 2021
    Assignees: CHINA PETROLEUM & CHEMICAL CORPORATION, RESEARCH INSTITUTE OF PETROLEUM PROCESSING, SINOPEC
    Inventors: Lingping Zhou, Weilin Zhang, Mingde Xu, Zhenyu Chen, Huiping Tian, Yuxia Zhu
  • Publication number: 20210178370
    Abstract: A modified Y-type molecular sieve has a rare earth content of about 4% to about 11% by weight on the basis of the oxide, a phosphorus content of about 0.05% to about 10% by weight on the basis of P2O5, a sodium content of no more than about 0.5% by weight on the basis of sodium oxide, and an active element content of about 0.1% to about 5% by weight on the basis of the oxide, with the active element being gallium and/or boron. The modified Y-type molecular sieve has a total pore volume of about 0.36 mL/g to about 0.48 mL/g, a percentage of the pore volume of secondary pores having a pore size of 2-100 nm of about 20% to about 40%; a lattice constant of about 2.440 nm to about 2.455 nm, and a lattice collapse temperature of not lower than about 1060° C.
    Type: Application
    Filed: August 15, 2019
    Publication date: June 17, 2021
    Inventors: Lingping ZHOU, Hao SHA, Mingde XU, Weilin ZHANG, Shuai YUAN, Zhenyu CHEN, Qiuqiao JIANG, Huiping TIAN
  • Publication number: 20210170372
    Abstract: A modified Y-type molecular sieve has a rare earth content of about 4% to about 11% by weight on the basis of the oxide, a phosphorus content of about 0.05% to about 10% by weight on the basis of P2O5, a sodium content of no more than about 0.5% by weight on the basis of sodium oxide, a gallium content of about 0.1% to about 2.5% by weight on the basis of gallium oxide, and a zirconium content of about 0.1% to about 2.5% by weight on the basis of zirconia; and the modified Y-type molecular sieve has a total pore volume of about 0.36 mL/g to about 0.48 mL/g, a percentage of the pore volume of secondary pores having a pore size of 2-100 nm to the total pore volume of about 20% to about 40%.
    Type: Application
    Filed: August 15, 2019
    Publication date: June 10, 2021
    Inventors: Lingping ZHOU, Qiuqiao JIANG, Shuai YUAN, Hao SHA, Mingde XU, Zhenyu CHEN, Weilin ZHANG, Huiping TIAN
  • Publication number: 20210170373
    Abstract: A modified Y-type molecular sieve has a rare earth content of about 4-11% by weight on the basis of rare earth oxide, a sodium content of no more than about 0.5 wt % by weight on the basis of sodium oxide, a zinc content of about 0.5-5% by weight on the basis of zinc oxide, a phosphorus content of about 0.05-10% by weight on the basis of phosphorus pentoxide, a framework silica-alumina ratio of about 7-14 calculated on the basis of SiO2/Al2O3 molar ratio, a percentage of non-framework aluminum content to the total aluminum content of no more than about 10%, and a percentage of the pore volume of secondary pores having a pore size of 2-100 nm to the total pore volume of about 20-40%. The modified Y-type molecular sieve has a high crystallinity and a high thermal and hydrothermal stability, and is rich in secondary pores.
    Type: Application
    Filed: August 20, 2019
    Publication date: June 10, 2021
    Inventors: Hao SHA, Lingping ZHOU, Shuai YUAN, Weilin ZHANG, Zhenyu CHEN, Mingde XU, Huiping TIAN
  • Publication number: 20210163828
    Abstract: A modified Y-type molecular sieve has a rare earth content of about 4-11% by weight on the basis of rare earth oxide, a sodium content of no more than about 0.7% by weight on the basis of sodium oxide, a zinc content of about 0.5-5% by weight on the basis of zinc oxide, a phosphorus content of about 0.05-10% by weight on the basis of phosphorus pentoxide, a framework silica-alumina ratio of about 7-14 calculated on the basis of SiO2/Al2O3 molar ratio, a percentage of non-framework aluminum content to the total aluminum content of no more than about 20%, and a percentage of the pore volume of secondary pores having a pore size of 2-100 nm to the total pore volume of about 15-30%. The modified Y-type molecular sieve has a high crystallinity, a structure comprising secondary pores, and a high thermal and hydrothermal stability.
    Type: Application
    Filed: August 20, 2019
    Publication date: June 3, 2021
    Inventors: Hao SHA, Lingping ZHOU, Shuai YUAN, Weilin ZHANG, Zhenyu CHEN, Mingde XU, Huiping TIAN
  • Patent number: 10888848
    Abstract: A catalytic cracking catalyst has a rare earth modified Y-type molecular sieve, an additive-containing alumina binder, and a clay. The rare earth modified Y-type molecular sieve has a rare earth oxide content of about 4-12 wt %, a phosphorus content of about 0-10 wt %, a sodium oxide content of no more than about 1.0 wt %, a total pore volume of about 0.36-0.48 mL/g, a percentage of the pore volume of secondary pores having a pore size of 2-100 nm to the total pore volume of about 20-40%, a lattice constant of about 2.440-2.455 nm, a percentage of non-framework aluminum content to the total aluminum content of no more than about 10%, a lattice collapse temperature of not lower than about 1060° C., and a ratio of B acid to L acid in the total acid content of the modified Y-type molecular sieve of no less than about 3.50.
    Type: Grant
    Filed: February 12, 2018
    Date of Patent: January 12, 2021
    Assignees: CHINA PETROLEUM & CHEMICAL CORPORATION, RESEARCH INSTITUTE OF PETROLEUM PROCESSING, SINOPEC
    Inventors: Lingping Zhou, Weilin Zhang, Mingde Xu, Zhenyu Chen, Huiping Tian, Yuxia Zhu
  • Publication number: 20200009541
    Abstract: A modified Y-type molecular sieve has a rare earth oxide content of about 4% to about 12% by weight, a phosphorus content of about 0% to about 10% by weight, a sodium oxide content of no more than about 1.0% by weight, a total pore volume of about 0.36 to 0.48 mL/g, a percentage of the pore volume of secondary pores to the total pore volume of about 20% to about 40%, a lattice constant of about 2.440 nm to about 2.455 nm, a percentage of the non-framework aluminum content to the total aluminum content of no more than about 10%, a lattice collapse temperature of not lower than about 1060° C., and a ratio of B acid to L acid of no less than about 3.50. The preparation of the molecular sieve includes ion-exchange with rare earth, hydrothermal roasting, gas phase ultra-stabilization, acid treatment, and an optional phosphorus modification.
    Type: Application
    Filed: February 12, 2018
    Publication date: January 9, 2020
    Inventors: Lingping ZHOU, Weilin ZHANG, Mingde XU, Zhenyu CHEN, Huiping TIAN, Yuxia ZHU
  • Publication number: 20190375646
    Abstract: A magnesium modified Y-type molecular sieve has a rare earth oxide content of about 4% to about 11% by weight, a magnesium oxide content of about 0.1% to about 4% by weight, a sodium oxide content of about 0.3% to about 0.8% by weight, a total pore volume of about 0.33 mL/g to about 0.39 mL/g, a percentage of the pore volume of secondary pores having a pore size of 2-100 nm to the total pore volume of the modified Y-type molecular sieve of about 10% to about 30%, a lattice constant of about 2.440 nm to about 2.455 nm, a percentage of non-framework aluminum content to the total aluminum content of the modified Y-type molecular sieve of no more than about 20%, and a lattice collapse temperature of not lower than about 1045° C.
    Type: Application
    Filed: February 12, 2018
    Publication date: December 12, 2019
    Inventors: Lingping ZHOU, Weilin ZHANG, Mingde XU, Zhenyu CHEN, Huiping TIAN, Yuxia ZHU
  • Publication number: 20190351396
    Abstract: A catalytic cracking catalyst has a rare earth modified Y-type molecular sieve, an additive-containing alumina binder, and a clay. The rare earth modified Y-type molecular sieve has a rare earth oxide content of about 12 wt %, a phosphorus content of about 0-10 wt %, a sodium oxide content of no more than about 1.0 wt %, a total pore volume of about 0.36-0.48 mL/g, a percentage of the pore volume of secondary pores having a pore size of 2-100 nm to the total pore volume of about 20-40%, a lattice constant of about 2.440-2.455 nm, a percentage of non-framework aluminum content to the total aluminum content of no more than about 10%, a lattice collapse temperature of not lower than about 1060° C., and a ratio of B acid to L acid in the total acid content of the modified Y-type molecular sieve of no less than about 3.50.
    Type: Application
    Filed: February 12, 2018
    Publication date: November 21, 2019
    Inventors: Lingping ZHOU, Weilin ZHANG, Mingde XU, Zhenyu CHEN, Huiping TIAN, Yuxia ZHU
  • Patent number: 9993811
    Abstract: A process for preparing a catalytic cracking catalyst, which process comprises: a molecular sieve is introduced into a gas-phase ultra-stabilization reactor, the molecular sieve is moved without the conveying of carrier gas from a molecular sieve inlet of the gas-phase ultra-stabilization reactor to a molecular sieve outlet of the gas-phase ultra-stabilization reactor, and the molecular sieve is contacted and reacted with a gaseous SiCl4 in the gas-phase ultra-stabilization reactor, the molecular sieve resulting from the contacting and the reacting is optionally washed, then mixed with a matrix and water into slurry, and shaped into particles.
    Type: Grant
    Filed: October 25, 2013
    Date of Patent: June 12, 2018
    Assignees: CHINA PETROLEUM & CHEMICAL CORPORATION, RESEARCH INSTITUTE OF PETROLEUM PROCESSING, SINOPEC
    Inventors: Lingping Zhou, Ziyang Liu, Jiexiao Zhang, Mingde Xu, Weilin Zhang, Huiping Tian, Yuxia Zhu
  • Patent number: 9895681
    Abstract: A process for preparing a catalytic cracking catalyst, which process comprises: a molecular sieve is introduced into a gas-phase ultra-stabilization reactor, the molecular sieve is moved without the conveying of carrier gas from a molecular sieve inlet of the gas-phase ultra-stabilization reactor to a molecular sieve outlet of the gas-phase ultra-stabilization reactor, and the molecular sieve is contacted and reacted with a gaseous SiCl4 in the gas-phase ultra-stabilization reactor, the molecular sieve resulting from the contacting and the reacting is optionally washed, then mixed with a matrix and water into slurry, and shaped into particles.
    Type: Grant
    Filed: October 25, 2013
    Date of Patent: February 20, 2018
    Assignees: CHINA PETROLEUM & CHEMICAL CORPORATION, RESEARCH INSTITUTE OF PETROLEUM PROCESSING, SINOPEC
    Inventors: Mingde Xu, Jiexiao Zhang, Lingping Zhou, Weilin Zhang, Huiping Tian, Yuxia Zhu
  • Publication number: 20150314278
    Abstract: A process for preparing a catalytic cracking catalyst, which process comprises: a molecular sieve is introduced into a gas-phase ultra-stabilization reactor, the molecular sieve is moved without the conveying of carrier gas from a molecular sieve inlet of the gas-phase ultra-stabilization reactor to a molecular sieve outlet of the gas-phase ultra-stabilization reactor, and the molecular sieve is contacted and reacted with a gaseous SiCl4 in the gas-phase ultra-stabilization reactor, the molecular sieve resulting from the contacting and the reacting is optionally washed, then mixed with a matrix and water into slurry, and shaped into particles.
    Type: Application
    Filed: October 25, 2013
    Publication date: November 5, 2015
    Inventors: Lingping ZHOU, Ziyang LIU, Jiexiao ZHANG, Mingde XU, Weilin ZHANG, Huiping TIAN, Yuxia ZHU
  • Publication number: 20150290631
    Abstract: A process for preparing a catalytic cracking catalyst, which process comprises: a molecular sieve is introduced into a gas-phase ultra-stabilization reactor, the molecular sieve is moved without the conveying of carrier gas from a molecular sieve inlet of the gas-phase ultra-stabilization reactor to a molecular sieve outlet of the gas-phase ultra-stabilization reactor, and the molecular sieve is contacted and reacted with a gaseous SiCl4 in the gas-phase ultra-stabilization reactor, the molecular sieve resulting from the contacting and the reacting is optionally washed, then mixed with a matrix and water into slurry, and shaped into particles.
    Type: Application
    Filed: October 25, 2013
    Publication date: October 15, 2015
    Inventors: Mingde Xu, Jiexiao Zhang, Lingping Zhou, Weilin Zhang, Huiping Tian, Yuxia Zhu