Patents by Inventor Minghan Ren

Minghan Ren has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150194545
    Abstract: The present invention relates generally to dendritic metal structures and devices including them. The present invention also relates particularly to methods for making dendritic metal structures without the use of solid electrolyte materials. In one aspect, a method for constructing a dendritic metal structure includes providing a substrate having a surface and a cathode disposed on the surface; providing an anode comprising a metal; and disposing a liquid on the surface of the substrate, such that the liquid is in electrical contact with the anode and the cathode; and then applying a bias voltage across the cathode and the anode sufficient to grow the dendritic metal structure extending from the cathode. The methods described herein can be used to grow dendritic metal electrodes, which can be useful in devices such as LEDs, touchscreens, solar cells and photodetectors.
    Type: Application
    Filed: March 18, 2015
    Publication date: July 9, 2015
    Inventors: Michael N. Kozicki, Minghan Ren
  • Patent number: 8999819
    Abstract: The present invention relates generally to dendritic metal structures and devices including them. The present invention also relates particularly to methods for making dendritic metal structures without the use of solid electrolyte materials. In one aspect, a method for constructing a dendritic metal structure includes providing a substrate having a surface and a cathode disposed on the surface; providing an anode comprising a metal; and disposing a liquid on the surface of the substrate, such that the liquid is in electrical contact with the anode and the cathode; and then applying a bias voltage across the cathode and the anode sufficient to grow the dendritic metal structure extending from the cathode. The methods described herein can be used to grow dendritic metal electrodes, which can be useful in devices such as LEDs, touchscreens, solar cells and photodetectors.
    Type: Grant
    Filed: November 11, 2011
    Date of Patent: April 7, 2015
    Assignee: Arizona Board of Regents, A Body Corporate of the State of Arizona Acting For on Behalf of Arizona State University
    Inventors: Michael N. Kozicki, Minghan Ren
  • Publication number: 20130228821
    Abstract: The present invention relates generally to dendritic metal structures and devices including them. The present invention also relates particularly to methods for making dendritic metal structures without the use of solid electrolyte materials. In one aspect, a method for constructing a dendritic metal structure includes providing a substrate having a surface and a cathode disposed on the surface; providing an anode comprising a metal; and disposing a liquid on the surface of the substrate, such that the liquid is in electrical contact with the anode and the cathode; and then applying a bias voltage across the cathode and the anode sufficient to grow the dendritic metal structure extending from the cathode. The methods described herein can be used to grow dedritic metal electrodes, which can be useful in devices such as LEDs, touchscreens, solar cells and photodetectors.
    Type: Application
    Filed: November 11, 2011
    Publication date: September 5, 2013
    Inventors: Michael N. Kozicki, Minghan Ren
  • Publication number: 20130220413
    Abstract: The present invention relates generally to plasmonic structures, methods for making them, and devices including them. In one aspect, a plasmonic structure includes a plurality of metal particles disposed on a substrate; and one or more metal structures electrically coupled to and disposed on a surface of each of the plurality of metal particles. The metal structures have a structure that is different than the structure of the metal particles. The metal structures can be grown, for example, by electrodeposition on the metal particles. Growth of such metal structures can tune the response of the plasmonic structure.
    Type: Application
    Filed: November 11, 2011
    Publication date: August 29, 2013
    Applicant: Arizona Board of Regents, a body Corporate of the State of Arizona acting for and on behalf of Arzon
    Inventors: Michael Kozicki, Minghan Ren