Patents by Inventor Minglong Xu

Minglong Xu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11342864
    Abstract: A three-degrees-of-freedom adjustment device driven by piezoelectric ceramics includes a Z-direction deflection mechanism at a bottom, an X-direction deflection mechanism mounted at the bottom, a Y-direction deflection mechanism mounted on the X-direction deflection mechanism, and a stage mounted on a deflect block of a deflection mechanism angle output; wherein the Z-direction deflection mechanism is located at the bottom, including a mounting substrate and two pre-compressed piezoelectric stacks; the piezoelectric stacks in the Z-direction deflection mechanism deflect in a Z direction under equal voltages; the X-direction deflection mechanism is similar to the Y-direction deflection mechanism in principle, including a deflection mechanism frame and a pair of piezoelectric stacks, wherein the X-direction deflection mechanism and the Y-direction deflection mechanism are vertically mounted, and are perpendicular to the Z-direction deflection mechanism plane as a whole.
    Type: Grant
    Filed: April 25, 2017
    Date of Patent: May 24, 2022
    Assignee: XI'AN JIAOTONG UNTVERSTTY
    Inventors: Minglong Xu, Zheng Tian, Zijian Jing
  • Patent number: 11094876
    Abstract: A piezoelectric steering engine of bistable includes a base, four torsion units respectively fixed on the base, and four stiffness devices respectively located at a free end of the four torsion units. The four torsion units share the same structure, and are sequentially arranged at an interval of 90° in a same plane. The four stiffness devices share the same structure and are all connected to rudder blades. Every torsion unit includes a cantilever beam, a first macro-fiber composite actuator and a second macro-fiber composite actuator both of which are respectively attached to two opposite surfaces of the cantilever beam. A first stiffness device includes an elastic ring and a bearing pad mounted inside the elastic ring. After the cantilever beam passes through the bearing pad, a torque is exerted on the cantilever beam by the elastic ring through the bearing pad, resulting in the buckling of the cantilever beam.
    Type: Grant
    Filed: June 20, 2017
    Date of Patent: August 17, 2021
    Assignee: XIAN JIAOTONG UNNVERSTTY
    Inventors: Minglong Xu, Zijian Jing
  • Patent number: 11075593
    Abstract: An inertial piezoelectric actuator driven by symmetrical sawtooth wave is symmetrical in structure and includes a seat, a slider, a piezoelectric stack and an elliptical ring. A pair of leaf-shaped flexible beams are arranged at a front end of a base, and a guide rail is connected between the pair of leaf-shaped flexible beams. The slider is placed on the guide rail. The piezoelectric stack is arranged in the elliptical ring with an interference fit. A front end of the elliptical ring is in contact with the guide rail, and a pre-stressed contact force between the elliptical ring and the guide rail is controlled by adjusting a screw at a rear end of the elliptical ring. A method for method for actuating bi-directional motion of the inertial piezoelectric actuator is further provided.
    Type: Grant
    Filed: November 12, 2020
    Date of Patent: July 27, 2021
    Assignee: XI'AN JIAOTONG UNIVERSITY
    Inventors: Minglong Xu, Yan Shao, Bo Feng
  • Publication number: 20210143757
    Abstract: An inertial piezoelectric actuator driven by symmetrical sawtooth wave is symmetrical in structure and includes a seat, a slider, a piezoelectric stack and an elliptical ring. A pair of leaf-shaped flexible beams are arranged at a front end of a base, and a guide rail is connected between the pair of leaf-shaped flexible beams. The slider is placed on the guide rail. The piezoelectric stack is arranged in the elliptical ring with an interference fit. A front end of the elliptical ring is in contact with the guide rail, and a pre-stressed contact force between the elliptical ring and the guide rail is controlled by adjusting a screw at a rear end of the elliptical ring. A method for method for actuating bi-directional motion of the inertial piezoelectric actuator is further provided.
    Type: Application
    Filed: November 12, 2020
    Publication date: May 13, 2021
    Inventors: Minglong XU, Yan SHAO, Bo FENG
  • Patent number: 10634871
    Abstract: A low-profile dual-axial deflection device having deflection axes intersecting at a mirror surface and method for achieving dual-axis deflection are disclosed, the device including essentially three parts: a base and a fixing support for fixing and mounting; elastic kite-shaped seats and deflection support base providing deflection driving, and a mirror carrier, a mirror and flexible hinges and connecting stations for limiting deflection displacement of the mirror carrier. The present disclosure uses four piezoelectric ceramics to realize the output control of the deflection angle, and has high control precision and fast response. Simultaneous driving of four piezoelectric ceramics can realize dual-axis deflection of the mirror. The device adopts a sinking mirror structure, and the deflection axes intersect at the surface of the mirror, thereby reducing the optical path control error caused by the longitudinal displacement of the mirror during deflection.
    Type: Grant
    Filed: May 13, 2019
    Date of Patent: April 28, 2020
    Assignee: XI'AN JIAOTONG UNIVERSITY
    Inventors: Minglong Xu, Siyang Song, Zheng Tian, Bo Feng, Shubao Shao
  • Publication number: 20190326504
    Abstract: A piezoelectric steering engine of bistable includes a base, four torsion units respectively fixed on the base, and four stiffness devices respectively located at a free end of the four torsion units. The four torsion units share the same structure, and are sequentially arranged at an interval of 90° in a same plane. The four stiffness devices share the same structure and are all connected to rudder blades. Every torsion unit includes a cantilever beam, a first macro-fiber composite actuator and a second macro-fiber composite actuator both of which are respectively attached to two opposite surfaces of the cantilever beam. A first stiffness device includes an elastic ring and a bearing pad mounted inside the elastic ring. After the cantilever beam passes through the bearing pad, a torque is exerted on the cantilever beam by the elastic ring through the bearing pad, resulting in the buckling of the cantilever beam.
    Type: Application
    Filed: June 20, 2017
    Publication date: October 24, 2019
    Inventors: Minglong Xu, Zijian Jing
  • Publication number: 20190271827
    Abstract: A low-profile dual-axial deflection device having deflection axes intersecting at a mirror surface and method for achieving dual-axis deflection are disclosed, the device including essentially three parts: a base and a fixing support for fixing and mounting; elastic kite-shaped seats and deflection support base providing deflection driving, and a mirror carrier, a mirror and flexible hinges and connecting stations for limiting deflection displacement of the mirror carrier. The present disclosure uses four piezoelectric ceramics to realize the output control of the deflection angle, and has high control precision and fast response. Simultaneous driving of four piezoelectric ceramics can realize dual-axis deflection of the mirror. The device adopts a sinking mirror structure, and the deflection axes intersect at the surface of the mirror, thereby reducing the optical path control error caused by the longitudinal displacement of the mirror during deflection.
    Type: Application
    Filed: May 13, 2019
    Publication date: September 5, 2019
    Inventors: Minglong XU, Siyang SONG, Zheng TIAN, Bo FENG, Shubao SHAO
  • Publication number: 20190157990
    Abstract: A three-degrees-of-freedom adjustment device driven by piezoelectric ceramics includes a Z-direction deflection mechanism at a bottom, an X-direction deflection mechanism mounted at the bottom, a Y-direction deflection mechanism mounted on the X-direction deflection mechanism, and a stage mounted on a deflect block of a deflection mechanism angle output; wherein the Z-direction deflection mechanism is located at the bottom, including a mounting substrate and two pre-compressed piezoelectric stacks; the piezoelectric stacks in the Z-direction deflection mechanism deflect in a Z direction under equal voltages; the X-direction deflection mechanism is similar to the Y-direction deflection mechanism in principle, including a deflection mechanism frame and a pair of piezoelectric stacks, wherein the X-direction deflection mechanism and the Y-direction deflection mechanism are vertically mounted, and are perpendicular to the Z-direction deflection mechanism plane as a whole.
    Type: Application
    Filed: April 25, 2017
    Publication date: May 23, 2019
    Inventors: Minglong Xu, Zheng Tian, Zijian Jing