Patents by Inventor Mingshen Li

Mingshen Li has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230260777
    Abstract: The present disclosure provides an ion trap apparatus and a saddle point moving method for the ion trap apparatus. The ion trap apparatus comprises: an insulating base material, the insulating base material being a concave structure; and at least two segments of arc-shaped metal reflective electrodes, wherein the arc-shaped metal reflective electrodes cover the front side of the insulating base material, the front side being a concave surface; each segment of the arc-shaped metal reflective electrodes is electrically insulated; and each segment of the arc-shaped metal reflective electrodes is used to receive a radio frequency voltage which has the same frequency, the same phase and an adjustable amplitude. The apparatus may achieve ideal imaging while improving the light collection efficiency, thereby improving the success rate of the preparation of ion-photon entangled states.
    Type: Application
    Filed: June 17, 2022
    Publication date: August 17, 2023
    Inventors: Zhao WANG, Qinglin MA, Jiayu GUO, Benran WANG, Mingshen LI, Yu WANG
  • Patent number: 11545913
    Abstract: The present disclosure relates to a device, comprising a first inverter, wherein the first inverter is configured to invert a DC input voltage into an AC output voltage, a first controller, wherein the first controller is configured to provide a reference voltage for the first inverter on the basis of an AC output current of the first inverter, a second inverter, wherein the second inverter is configured to invert a DC input voltage into an AC output voltage, a second controller, wherein the second controller is configured to provide a reference voltage for the second inverter on the basis of an AC output current of the second inverter, wherein the first inverter and the first controller form a first Hopf oscillator, wherein the second inverter and second controller form a second Hopf oscillator, and wherein the first Hopf oscillator is coupled to the second Hopf oscillator.
    Type: Grant
    Filed: October 28, 2021
    Date of Patent: January 3, 2023
    Assignee: HUAWEI DIGITAL POWER TECHNOLOGIES CO., LTD.
    Inventors: Shousong Ou, Mingshen Li, Josep Maria Guerrero, Juan Carlos Vasquez
  • Publication number: 20220052623
    Abstract: The present disclosure relates to a device, comprising a first inverter, wherein the first inverter is configured to invert a DC input voltage into an AC output voltage, a first controller, wherein the first controller is configured to provide a reference voltage for the first inverter on the basis of an AC output current of the first inverter, a second inverter, wherein the second inverter is configured to invert a DC input voltage into an AC output voltage, a second controller, wherein the second controller is configured to provide a reference voltage for the second inverter on the basis of an AC output current of the second inverter, wherein the first inverter and the first controller form a first Hopf oscillator, wherein the second inverter and second controller form a second Hopf oscillator, and wherein the first Hopf oscillator is coupled to the second Hopf oscillator.
    Type: Application
    Filed: October 28, 2021
    Publication date: February 17, 2022
    Inventors: Shousong OU, Mingshen LI, Josep Maria GUERRERO, Juan Carlos VASQUEZ
  • Patent number: 9837931
    Abstract: A steady state control method for a three-phase double-mode inverter. Off-grid steady state control is composed of outer loop power droop control, voltage feed-forward quasi-resonant control, and inner current loop dead-beat control. Therefore, the response speed of the inverter is raised, and the influence caused by the load fluctuation of a micro-grid is inhibited. Based on the off-grid steady state control, grid-connected steady state control introduces phase lead control to the power droop control. Therefore, the output voltage of the inverter is always slightly ahead of the power grid voltage, which avoids the energy pour backward phenomenon of the inverter due to a phase error, and realizes stable and reliable running in the grid-connected mode.
    Type: Grant
    Filed: September 15, 2014
    Date of Patent: December 5, 2017
    Assignees: Hunan University, Changsha Boli Electric Corporation
    Inventors: An Luo, Yandong Chen, Mingyue Wang, Qingchang Zhong, Leming Zhou, Yuan Huang, Zhiyong Chen, Xiaoping Zhou, Huimin Kuang, Mingshen Li
  • Publication number: 20170047862
    Abstract: A steady state control method for a three-phase double-mode inverter. Off-grid steady state control is composed of outer loop power droop control, voltage feed-forward quasi-resonant control, and inner current loop dead-beat control. Therefore, the response speed of the inverter is raised, and the influence caused by the load fluctuation of a micro-grid is inhibited. Based on the off-grid steady state control, grid-connected steady state control introduces phase lead control to the power droop control. Therefore, the output voltage of the inverter is always slightly ahead of the power grid voltage, which avoids the energy pour backward phenomenon of the inverter due to a phase error, and realizes stable and reliable running in the grid-connected mode.
    Type: Application
    Filed: September 15, 2014
    Publication date: February 16, 2017
    Applicants: Hunan University, Changsha Boli Electric Corporation
    Inventors: An Luo, Yandong Chen, Mingyue Wang, Qingchang Zhong, Leming Zhou, Yuan Huang, Zhiyong Chen, Xiaoping Zhou, Huimin Kuang, Mingshen Li