Patents by Inventor Mingyao Zhu

Mingyao Zhu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11478665
    Abstract: Techniques for particle beam therapy include receiving a target region inside a subject for particle therapy, a minimum dose inside the target region, and a maximum dose inside the subject but outside target region. Multiple beam axis angles are determined, each involving a gantry angle and a couch position. Multiple spots within the target region are determined. For each beam axis angle a pristine particle scan beam (not coaxial with any other particle scan beam) is determined such that a Bragg Peak is directed to a spot, and repeated until every spot is subjected to a Bragg Peak or an intersection of two or more such pristine scan beams. Output data indicating the pristine beamlets is stored for operation of a particle beam therapy apparatus.
    Type: Grant
    Filed: February 15, 2018
    Date of Patent: October 25, 2022
    Assignee: UNIVERSITY OF MARYLAND, BALTIMORE
    Inventors: James William Snider, III, William F. Regine, Mingyao Zhu, Katja Langen
  • Publication number: 20200001118
    Abstract: Techniques for particle beam therapy include receiving a target region inside a subject for particle therapy, a minimum dose inside the target region, and a maximum dose inside the subject but outside target region. Multiple beam axis angles are determined, each involving a grantry angle and a couch position. Multiple spots within the target region are determined. For each beam axis angle a pristine particle scan beam (not coaxial with any other particle scan beam) is determined such that a Bragg Peak is directed to a spot, and repeated until every spot is subjected to a Bragg Peak or an intersection of two or more such pristine scan beams. Output data indicating the pristine beamlets is stored for operation of a particle beam therapy apparatus.
    Type: Application
    Filed: February 15, 2018
    Publication date: January 2, 2020
    Inventors: James William Snider, III, William F. Regine, Mingyao Zhu, Katja Langen
  • Patent number: 10265543
    Abstract: A treatment planning system for generating patient-specific treatment. The system including one or more processors programmed to receive a radiation treatment plan (RTP) for irradiating a target over the course of one or more treatment fractions, said RTP including a planned dose distribution to be delivered to the target, receive motion data for at least one of the treatment fractions of the RTP, receive temporal delivery metric data for at least one of the treatment fractions of the RTP, calculate a motion-compensated dose distribution for the target using the motion data and the temporal delivery metric data to adjust the planned dose distribution based on the received motion data and temporal delivery metric data, and compare the motion-compensated dose distribution to the planned dose distribution.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: April 23, 2019
    Assignees: KONINKLIJKE PHILIPS N.V., WASHINGTON UNIVERSITY
    Inventors: Shyam Bharat, Mingyao Zhu, Parag Jitendra Parikh, Karl Antonin Bzdusek
  • Publication number: 20140336438
    Abstract: A treatment planning system for generating patient-specific treatment. The system including one or more processors programmed to receive a radiation treatment plan (RTP) for irradiating a target over the course of one or more treatment fractions, said RTP including a planned dose distribution to be delivered to the target, receive motion data for at least one of the treatment fractions of the RTP, receive temporal delivery metric data for at least one of the treatment fractions of the RTP, calculate a motion-compensated dose distribution for the target using the motion data and the temporal delivery metric data to adjust the planned dose distribution based on the received motion data and temporal delivery metric data, and compare the motion-compensated dose distribution to the planned dose distribution.
    Type: Application
    Filed: November 30, 2012
    Publication date: November 13, 2014
    Inventors: Shyam Bharat, Mingyao Zhu, Parag Jitendra Parikh, Karl Antonin Bzdusek
  • Patent number: 8153240
    Abstract: Carbon nanoflakes, methods of making the nanoflakes, and applications of the carbon nanoflakes are provided. In some embodiments, the carbon nanoflakes are carbon nanosheets, which are less than 2 nm thick. The carbon nanoflakes may be made using RF-PECVD. Carbon nanoflakes may be useful as field emitters, for hydrogen storage applications, for sensors, and as catalyst supports.
    Type: Grant
    Filed: October 4, 2004
    Date of Patent: April 10, 2012
    Assignee: College of William and Mary
    Inventors: Jianjun Wang, Mingyao Zhu, Brian C. Holloway, Ronald A. Outlaw, Dennis M. Manos, Xin Zhao
  • Publication number: 20090011204
    Abstract: Carbon nanoflakes, methods of making the nanoflakes, and applications of the carbon nanoflakes are provided. In some embodiments, the carbon nanoflakes are carbon nanosheets, which are less than 2 nm thick. The carbon nanoflakes may be made using RF-PECVD. Carbon nanoflakes may be useful as field emitters, for hydrogen storage applications, for sensors, and as catalyst supports.
    Type: Application
    Filed: October 4, 2004
    Publication date: January 8, 2009
    Inventors: Jianjun Wang, Mingyao Zhu, Brian C. Holloway, Ronald A. Outlaw, Dennis M. Manos, Xin Zhao
  • Publication number: 20090011241
    Abstract: Novel compositions and morphologies of carbon nanoflakes are described, as well as methods for making carbon nanoflakes using a radio frequency plasma enhanced chemical vapor deposition (RF-PECVD) process. Acetylene is used as a CVD source gas. By utilizing high concentrations of acetylene in the CVD source gas at relatively low temperatures, carbon nanoflake growth rate and robustness are improved, and the resulting carbon nanoflakes have enhanced height uniformity.
    Type: Application
    Filed: July 7, 2008
    Publication date: January 8, 2009
    Applicant: COLLEGE OF WILLIAM AND MARY
    Inventors: Mingyao Zhu, Dennis M. Manos, Ronald A. Outlaw