Patents by Inventor Mingyuan Ge

Mingyuan Ge has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190109317
    Abstract: An electrode for a lithium ion battery, the electrode including nanoporous silicon structures, each nanoporous silicon structure defining a multiplicity of pores, a binder, and a conductive substrate. The nanoporous silicon structures are mixed with the binder to form a composition, and the composition is adhered to the conductive substrate to form the electrode. The nanoporous silicon may be, for example, nanoporous silicon nanowires or nanoporous silicon formed by etching a silicon wafer, metallurgical grade silicon, silicon nanoparticles, or silicon prepared from silicon precursors in a plasma or chemical vapor deposition process. The nanoporous silicon structures may be coated or combined with a carbon-containing compound, such as reduced graphene oxide. The electrode has a high specific capacity (e.g., above 1000 mAh/g at current rate of 0.4 A/g, above 1000 mAh/g at a current rate of 2.0 A/g, or above 1400 mAh/g at a current rate of 1.0 A/g).
    Type: Application
    Filed: December 4, 2018
    Publication date: April 11, 2019
    Inventors: Chongwu Zhou, Mingyuan Ge, Jiepeng Rong, Xin Fang
  • Patent number: 9831502
    Abstract: An electrode includes a first free-standing carbon network, an active material deposited above the first free-standing carbon network, and a second free-standing carbon network covering the active material. The first and second carbon networks are a binder, a conductive additive and a current collector to the electrode.
    Type: Grant
    Filed: April 27, 2015
    Date of Patent: November 28, 2017
    Assignee: University of Southern California
    Inventors: Chongwu Zhou, Xin Fang, Mingyuan Ge, Jiepeng Rong
  • Publication number: 20170162876
    Abstract: A method includes combining a coating material and an uncoated particulate core material in a solution having a selected ionic strength. The selected ionic strength promotes coating of the uncoated particulate core material with the coating material to form coated particles; and the coated particles can be collected after formation. The coating material has a higher electrical conductivity than the core material.
    Type: Application
    Filed: February 24, 2017
    Publication date: June 8, 2017
    Applicant: University of Southern California
    Inventors: Chongwu Zhou, Jiepeng Rong, Mingyuan Ge, Xin Fang
  • Publication number: 20150380738
    Abstract: An electrode includes a first free-standing carbon network, an active material deposited above the first free-standing carbon network, and a second free-standing carbon network covering the active material. The first and second carbon networks are a binder, a conductive additive and a current collector to the electrode.
    Type: Application
    Filed: April 27, 2015
    Publication date: December 31, 2015
    Applicant: UNIVERSITY OF SOUTHERN CALIFORNIA
    Inventors: Chongwu Zhou, Xin Fang, Mingyuan Ge, Jiepeng Rong
  • Publication number: 20140356721
    Abstract: A method includes combining a coating material and an uncoated particulate core material in a solution having a selected ionic strength. The selected ionic strength promotes coating of the uncoated particulate core material with the coating material to form coated particles; and the coated particles can be collected after formation. The coating material has a higher electrical conductivity than the core material.
    Type: Application
    Filed: May 30, 2014
    Publication date: December 4, 2014
    Applicant: University of Southern California
    Inventors: Chongwu Zhou, Jiepeng Rong, Mingyuan Ge, Xin Fang
  • Patent number: 8623242
    Abstract: Disclosed is a method suitable for large-scale producing silver nanostructures including nanoparticles and nanowires with high crystallization and purity in a short period of time. In this method, silver particles with mean diameter less than 200 nm and silver nanowires with length in micrometers are produced through a microwave-assisted wet chemistry method. Tens to hundreds grams of silver nanoparticles and nanowires are obtained in minutes by microwave irradiation treatment to a precursor pre-made by highly concentrated silver salt solution and other additives. These silver nanoparticles and nanowires have good dispersibility and are ideal for forming conductive adhesives.
    Type: Grant
    Filed: December 11, 2009
    Date of Patent: January 7, 2014
    Assignee: Jiangsu Nanowell Advanced Materials Sci & Tech. Co., Ltd.
    Inventors: Qingkui Jiang, Zhenyu Chang, Mingyuan Ge, Yonghao Lu
  • Publication number: 20130252101
    Abstract: An electrode for a lithium ion battery, the electrode including nanoporous silicon structures, each nanoporous silicon structure defining a multiplicity of pores, a binder, and a conductive substrate. The nanoporous silicon structures are mixed with the binder to form a composition, and the composition is adhered to the conductive substrate to form the electrode. The nanoporous silicon may be, for example, nanoporous silicon nanowires or nanoporous silicon formed by etching a silicon wafer, metallurgical grade silicon, silicon nanoparticles, or silicon prepared from silicon precursors in a plasma or chemical vapor deposition process. The nanoporous silicon structures may be coated or combined with a carbon-containing compound, such as reduced graphene oxide. The electrode has a high specific capacity (e.g., above 1000 mAh/g at current rate of 0.4 A/g, above 1000 mAh/g at a current rate of 2.0 A/g, or above 1400 mAh/g at a current rate of 1.0 A/g).
    Type: Application
    Filed: March 14, 2013
    Publication date: September 26, 2013
    Applicant: UNIVERSITY OF SOUTHERN CALIFORNIA
    Inventors: Chongwu Zhou, Mingyuan Ge, Jiepeng Rong, Xin Fang
  • Publication number: 20100148132
    Abstract: Disclosed is a method suitable for large-scale producing silver nanostructures including nanoparticles and nanowires with high crystallization and purity in a short period of time. In this method, silver particles with mean diameter less than 200 nm and silver nanowires with length in micrometers are produced through a microwave-assisted wet chemistry method. Tens to hundreds grams of silver nanoparticles and nanowires are obtained in minutes by microwave irradiation treatment to a precursor pre-made by highly concentrated silver salt solution and other additives. These silver nanoparticles and nanowires have good dispersibility and are ideal for forming conductive adhesives.
    Type: Application
    Filed: December 11, 2009
    Publication date: June 17, 2010
    Inventors: Qingkui Jiang, Zhenyu Chang, Mingyuan Ge, Yonghao Lu