Patents by Inventor Mingzhe Yu

Mingzhe Yu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240343663
    Abstract: A method for dehydrogenation of one or more hydrocarbons and regeneration and reactivation of a catalyst composition includes contacting a first gaseous stream comprising a first hydrocarbon, such as propane, with a catalyst composition in a dehydrogenation reactor at a first temperature, thereby producing a first dehydrogenated hydrocarbon, such as propylene, and a deactivated catalyst composition; combusting at least one fuel gas and coke on the deactivated catalyst in the presence of oxygen at a second temperature, thereby producing a heated catalyst composition; and reactivating the catalyst in the presence of oxygen. The second temperature is from 50° C. to 200° C. greater than the first temperature. The catalyst composition is also described and comprises gallium, platinum and a further noble metal, such as palladium.
    Type: Application
    Filed: August 29, 2022
    Publication date: October 17, 2024
    Applicant: Dow Global Technologies LLC
    Inventors: Lin Luo, Adrianus Koeken, Mingzhe Yu, Andrzej Malek, Hangyao Wang, Luis Bollmann
  • Patent number: 11945772
    Abstract: A method including the step contacting an olefin, an alcohol, a metallosilicate catalyst and a solvent, wherein the solvent comprises structure (I): wherein R1 and R2 are each selected from the group consisting of an aryl group and an alkyl group with the proviso that at least one of R1 and R2 is an aryl group, further wherein n is 1-3.
    Type: Grant
    Filed: September 29, 2020
    Date of Patent: April 2, 2024
    Assignee: Dow Global Technologies LLC
    Inventors: Wen-Sheng Lee, Mingzhe Yu, Jing L. Houser, Sung-Yu Ku, Wanglin Yu, Stephen W. King, Paulami Majumdar, Le Wang
  • Patent number: 11939417
    Abstract: A heterogeneous procatalyst includes a preformed heterogeneous procatalyst and a metal-ligand complex. The preformed heterogeneous procatalyst includes a titanium species and a magnesium chloride (MgCl2) support. The metal-ligand complex has a structural formula (L)aM(Y)m(XR2)b, where M is a metal cation; each L is a neutral ligand or (?O); each Y is a halide or (C1-C20)alkyl; each XR2 is an anionic ligand in which X is a heteroatom or a heteroatom-containing functional group and R2 is (C1-C20)hydrocarbyl or (C1-C20) heterohydrocarbyl; n is 0, 1, or 2; m is 0-4; and b is 1-6. The metal-ligand complex is overall charge neutral. The heterogeneous procatalyst exhibits improved average molecular weight capability. A catalyst system includes the heterogeneous procatalyst and a cocatalyst. Processes for producing the heterogeneous procatalyst and processes for producing ethylene-based polymers utilizing the heterogeneous procatalyst are also disclosed.
    Type: Grant
    Filed: May 29, 2019
    Date of Patent: March 26, 2024
    Assignee: Dow Global Technologies LLC
    Inventors: Linfeng Chen, Mingzhe Yu, Mehmet Demirors, Andrew T. Heitsch, Jeffrey A. Sims, David Gordon Barton, Kurt F. Hirsekorn, Peter N. Nickias
  • Patent number: 11857935
    Abstract: A heterogeneous procatalyst includes a titanium species, a magnesium chloride component, and a chlorinating agent having a structure A(Cl)x(R1)3-x, where A is aluminum or boron, R1 is a (C1-C30) hydrocarbyl, and x is 1, 2, or 3. The magnesium chloride component may be thermally treated at a temperature greater than 100 C for at least 30 minutes before or after introduction of the chlorinating agent and titanium species to the heterogeneous procatalyst. The heterogeneous procatalyst having the thermally treated magnesium chloride exhibits improved average molecular weight capability. Processes for producing the heterogeneous procatalyst and processes for producing ethylene-based polymers utilizing the heterogeneous procatalyst are also disclosed.
    Type: Grant
    Filed: May 23, 2019
    Date of Patent: January 2, 2024
    Assignee: Dow Global Technologies LLC
    Inventors: Mingzhe Yu, David Gordon Barton, Kurt F. Hirsekorn, Sadeka Onam, Peter N. Nickias, Andrew T. Heitsch, Thomas H. Peterson
  • Publication number: 20220274903
    Abstract: A method including the step contacting an olefin, an alcohol, a metallosilicate catalyst and a solvent, wherein the solvent comprises structure (I): wherein R1 and R2 are each selected from the group consisting of an aryl group and an alkyl group with the proviso that at least one of R1 and R2 is an aryl group, further wherein n is 1-3.
    Type: Application
    Filed: September 29, 2020
    Publication date: September 1, 2022
    Inventors: Wen-Sheng Lee, Mingzhe Yu, Jing L. Houser, Sung-Yu Ku, Wanglin Yu, Stephen W. King, Paulami Majumdar, Le Wang
  • Publication number: 20220266238
    Abstract: According to a least one feature of the present disclosure, a method includes the steps: (a) providing a metallosilicate catalyst that has been used to catalyze a chemical reaction; and (b) heating the metallosilicate catalyst to a temperature from 200° C. to 425° C. for a period of 0.5 hours to 5 hours.
    Type: Application
    Filed: September 29, 2020
    Publication date: August 25, 2022
    Inventors: Wen -Sheng Lee, Mingzhe Yu, Thomas H. Peterson, Sung-Yu Ku, Wanglin Yu, Le Wang, Stephen W. King
  • Publication number: 20210221924
    Abstract: A heterogeneous procatalyst includes a preformed heterogeneous procatalyst and a metal-ligand complex. The preformed heterogeneous procatalyst includes a titanium species and a magnesium chloride (MgCl2) support. The metal-ligand complex has a structural formula (L)aM(Y)m(XR2)b, where M is a metal cation; each L is a neutral ligand or (?O); each Y is a halide or (C1-C20)alkyl; each XR2 is an anionic ligand in which X is a heteroatom or a heteroatom-containing functional group and R2 is (C1-C20)hydrocarbyl or (C1-C20) heterohydrocarbyl; n is 0, 1, or 2; m is 0-4; and b is 1-6. The metal-ligand complex is overall charge neutral. The heterogeneous procatalyst exhibits improved average molecular weight capability. A catalyst system includes the heterogeneous procatalyst and a cocatalyst. Processes for producing the heterogeneous procatalyst and processes for producing ethylene-based polymers utilizing the heterogeneous procatalyst are also disclosed.
    Type: Application
    Filed: May 29, 2019
    Publication date: July 22, 2021
    Applicant: Dow Global Technologies LLC
    Inventors: Linfeng Chen, Mingzhe Yu, Mehmet Demirors, Andrew T. Heitsch, Jeffrey A. Sims, David Gordon Barton, Kurt F. Hirsekorn, Peter N. Nickias
  • Publication number: 20210205785
    Abstract: A heterogeneous procatalyst includes a titanium species, a magnesium chloride component, and a chlorinating agent having a structure A(C)x(R1)3-x, where A is aluminum or boron, R1 is a (C1-C30) hydrocarbyl, and x is 1, 2, or 3. The magnesium chloride component may be thermally treated at a temperature greater than 100 C for at least 30 minutes before or after introduction of the chlorinating agent and titanium species to the heterogeneous procatalyst. The heterogeneous procatalyst having the thermally treated magnesium chloride exhibits improved average molecular weight capability. Processes for producing the heterogeneous procatalyst and processes for producing ethylene-based polymers utilizing the heterogeneous procatalyst are also disclosed.
    Type: Application
    Filed: May 23, 2019
    Publication date: July 8, 2021
    Applicant: Dow Global Technologies LLC
    Inventors: Mingzhe Yu, David Gordon Barton, Kurt F. Hirsekorn, Sadeka Onam, Peter N. Nickias, Andrew T. Heitsch, Thomas H. Peterson