Patents by Inventor Mingzhen Tian

Mingzhen Tian has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20070285762
    Abstract: Techniques for reconfiguring spectral features stored in a medium based on a two-state atomic system with transition dipole moment ? includes causing a chirp to pass into the medium. The chirp includes a monochromatic frequency that varies in time by a chirp rate ? over a frequency band BR during a time interval TR. The amplitude AR of the chirp is constant over BR and equal to AR=(hbar/??)?{square root over ((? ln [2/?]))}, The term hbar is reduced Plank's constant, ln is a natural logarithm function, and ? is a ratio of a circumference of a circle to a diameter of the circle. For ?<<1, the atomic-state populations in the two states are inverted. For ?=1, prior atomic-state populations are erased, with final populations equal in the two states, regardless of populations before erasure.
    Type: Application
    Filed: July 14, 2006
    Publication date: December 13, 2007
    Inventors: Tiejun Chang, Mingzhen Tian, William Babbitt, Kristian Merkel
  • Patent number: 7307781
    Abstract: Techniques for reconfiguring spectral features stored in a medium based on a two-state atomic system with transition dipole moment ? includes causing a chirp to pass into the medium. The chirp includes a monochromatic frequency that varies in time by a chirp rate ? over a frequency band BR during a time interval TR. The amplitude AR of the chirp is constant over BR and equal to AR=(hbar/??)?{square root over ((? ln [2/?]))}, The term hbar is reduced Plank's constant, ln is a natural logarithm function, and ? is a ratio of a circumference of a circle to a diameter of the circle. For ?<<1, the atomic-state populations in the two states are inverted. For ?=1, prior atomic-state populations are erased, with final populations equal in the two states, regardless of populations before erasure.
    Type: Grant
    Filed: July 14, 2006
    Date of Patent: December 11, 2007
    Assignee: Montana State University
    Inventors: Tiejun Chang, Mingzhen Tian, William R. Babbitt, Kristian D. Merkel
  • Patent number: 7145713
    Abstract: Techniques for recovering optical spectral features include receiving a detected time series that represents a temporally varying intensity of an optical signal. The optical signal is formed in response to an interaction between a target optical spectrum and a chirped optical field. The chirped optical field is an optical field that has a monochromatic frequency that varies in time. The target optical spectrum is an optical frequency dependent optical property of a material or device. A phase correction factor is determined based only on one or more properties of the chirped optical field. The detected time series is corrected based on the phase correction factor to produce an output time series that reproduces in time a shape of the target spectrum in frequency. These techniques allow for fast measurement of spectral features and eliminate the need for prior knowledge of the target optical spectrum to adjust the chirp rate.
    Type: Grant
    Filed: July 12, 2005
    Date of Patent: December 5, 2006
    Assignee: Montana State University
    Inventors: Tiejun Chang, Mingzhen Tian, William R. Babbitt, Kristian Merkel
  • Publication number: 20060012797
    Abstract: Techniques for recovering optical spectral features include receiving a detected time series that represents a temporally varying intensity of an optical signal. The optical signal is formed in response to an interaction between a target optical spectrum and a chirped optical field. The chirped optical field is an optical field that has a monochromatic frequency that varies in time. The target optical spectrum is an optical frequency dependent optical property of a material or device. A phase correction factor is determined based only on one or more properties of the chirped optical field. The detected time series is corrected based on the phase correction factor to produce an output time series that reproduces in time a shape of the target spectrum in frequency. These techniques allow for fast measurement of spectral features and eliminate the need for prior knowledge of the target optical spectrum to adjust the chirp rate.
    Type: Application
    Filed: July 12, 2005
    Publication date: January 19, 2006
    Inventors: Tiejun Chang, Mingzhen Tian, William Babbitt, Kristian Merkel