Patents by Inventor Mingzhu TAO

Mingzhu TAO has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11961244
    Abstract: Disclosed is a high-precision dynamic real-time 360-degree omnidirectional point cloud acquisition method based on fringe projection. The method comprises: firstly, by means of the fringe projection technology based on a stereoscopic phase unwrapping method, and with the assistance of an adaptive dynamic depth constraint mechanism, acquiring high-precision three-dimensional (3D) data of an object in real time without any additional auxiliary fringe pattern; and then, after a two-dimensional (2D) matching points optimized by the means of corresponding 3D information is rapidly acquired, by means of a two-thread parallel mechanism, carrying out coarse registration based on Simultaneous Localization and Mapping (SLAM) technology and fine registration based on Iterative Closest Point (ICP) technology.
    Type: Grant
    Filed: August 27, 2020
    Date of Patent: April 16, 2024
    Assignee: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY
    Inventors: Chao Zuo, Jiaming Qian, Qian Chen, Shijie Feng, Tianyang Tao, Yan Hu, Wei Yin, Liang Zhang, Kai Liu, Shuaijie Wu, Mingzhu Xu, Jiaye Wang
  • Patent number: 11864552
    Abstract: A digital detection method and system for predicting drug resistance of transgenic maize are disclosed. The method includes acquiring an RGB image, three-dimensional point cloud data and chlorophyll relative content of a maize plant after medicament spraying at a current moment; calculating a pixel ratio and morphological feature according to the RGB image and three-dimensional point cloud data; inputting a detection parameter of the maize plant at the current moment into a series model to predict the detection parameter of the maize plant at a next moment to obtain a graph of change in the detection parameter in a next period; estimating a drug resistance characteristic according to the graph of the change in the detection parameter of the maize plant; and inputting the detection parameter of the maize plant at the current moment into a parallel model to predict the variety of the maize plant.
    Type: Grant
    Filed: August 11, 2021
    Date of Patent: January 9, 2024
    Assignee: Zhejiang University
    Inventors: Yong He, Xuping Feng, Mingzhu Tao, Rui Yang, Jinnuo Zhang, Yongqiang Shi
  • Publication number: 20230410280
    Abstract: A method for monitoring rice bacterial blight includes: obtaining a multi-spectral image, severities of the rice bacterial blight, and accumulated temperature data of a rice field at different growth stages; obtaining resistance of rice varieties to the bacterial blight; extracting a mean canopy spectral reflectance of each plot in the rice field; conducting regression of the severity of the rice bacterial blight using a convolutional neural network based on the mean canopy spectral reflectance and the severity of the rice bacterial blight, and outputting a depth spectrum feature; training a disease severity regression model with the accumulated temperature data, the depth spectrum feature, and the resistance to the bacterial blight for each plot as an input and the corresponding severity as an output; and monitoring a severity of the rice bacterial blight in a to-be-monitored rice field using the disease severity regression model.
    Type: Application
    Filed: January 23, 2023
    Publication date: December 21, 2023
    Inventors: Xuping FENG, Xiulin BAI, Yong HE, Jinnuo ZHANG, Mingzhu TAO, Qingguan WU
  • Patent number: 11499094
    Abstract: The present disclosure provides a ratiometric fluorescent probe, a preparation method thereof, and an application in detection of hydrogen peroxide. In the present disclosure, MoOx QDs (nanoenzymes) and Co/Zn-MOFs both have catalytic activity, and the large specific surface area and porous structure of Co/Zn-MOFs can provide more binding sites for the contact between nanoenzymes and substrates. Moreover, Co/Zn-MOFs have high catalytic activity similar to natural enzymes. When nanoenzymes with fluorescent properties encounter Co/Zn-MOFs with similar catalytic activity, they will collide with a spark of “synergy catalysis”, and the fusion of the two plays a role of synergy catalysis; in addition, the uniform cavity of Co/Zn-MOFs can provide “hosts” for nanoenzymes, and Co/Zn-MOFs provide “anchors” for MoOx QDs, avoiding the aggregation of MoOx QDs and enhancing the stability of the probe.
    Type: Grant
    Filed: January 14, 2022
    Date of Patent: November 15, 2022
    Assignee: Zhejiang University
    Inventors: Yong He, Yongqiang Shi, Xuping Feng, Lei Lin, Fangfang Qu, Mingzhu Tao
  • Publication number: 20220217966
    Abstract: A digital detection method and system for predicting drug resistance of transgenic maize are disclosed. The method includes acquiring an RGB image, three-dimensional point cloud data and chlorophyll relative content of a maize plant after medicament spraying at a current moment; calculating a pixel ratio and morphological feature according to the RGB image and three-dimensional point cloud data; inputting a detection parameter of the maize plant at the current moment into a series model to predict the detection parameter of the maize plant at a next moment to obtain a graph of change in the detection parameter in a next period; estimating a drug resistance characteristic according to the graph of the change in the detection parameter of the maize plant; and inputting the detection parameter of the maize plant at the current moment into a parallel model to predict the variety of the maize plant.
    Type: Application
    Filed: August 11, 2021
    Publication date: July 14, 2022
    Applicant: Zhejiang University
    Inventors: Yong HE, Xuping FENG, Mingzhu TAO, Rui YANG, Jinnuo ZHANG, Yongqiang SHI