Patents by Inventor Minhan Chen

Minhan Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11953527
    Abstract: A peak detector comprises multiple small-size amplitude detection circuits coupled in parallel to signal inputs at which a signal is received from a VCO. Each amplitude detection circuit generates a voltage on an output, indicating a voltage peak or amplitude of a first signal input and a second signal input (specifically, differential output of VCO). At a given time, only one small-size amplitude detection circuit is activated to load VCO, reducing the impact on LC resonant frequency. The plurality of small-size detection circuits work sequentially, and an automatic averaging of their outputs can significantly improve the peak detector fluctuation (caused by process variation and device mismatch) compared to each single small-size amplitude detection circuit.
    Type: Grant
    Filed: August 24, 2022
    Date of Patent: April 9, 2024
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Ping Lu, Shaishav A. Desai, Minhan Chen
  • Publication number: 20240069074
    Abstract: A peak detector comprises multiple small-size amplitude detection circuits coupled in parallel to signal inputs at which a signal is received from a VCO. Each amplitude detection circuit generates a voltage on an output, indicating a voltage peak or amplitude of a first signal input and a second signal input (specifically, differential output of VCO). At a given time, only one small-size amplitude detection circuit is activated to load VCO, reducing the impact on LC resonant frequency. The plurality of small-size detection circuits work sequentially, and an automatic averaging of their outputs can significantly improve the peak detector fluctuation (caused by process variation and device mismatch) compared to each single small-size amplitude detection circuit.
    Type: Application
    Filed: August 24, 2022
    Publication date: February 29, 2024
    Inventors: Ping LU, Shaishav A. DESAI, Minhan CHEN
  • Publication number: 20230384738
    Abstract: A time-to-digital converter (TDC) circuit generates a digital output indicating a time, known as a phase difference, from a phase of the generated signal to a corresponding phase of a reference signal. The digital output is used by the digitally controlled oscillator (DCO) to correct for the phase/frequency difference to synchronize the generated signal with the reference signal. In an aspect, an adaptive TDC circuit generates a first digital indication in a coarse mode when the offset time is above a threshold and generates a second digital indication in a fine mode when the offset time is below the threshold. The first digital indication and the second digital indication each comprise a same number of bits, and the first digital indication is normalized to the second digital indication for the digital output of the adaptive TDC circuit. A fractional bit may be employed to compensate for a quantization error.
    Type: Application
    Filed: May 31, 2022
    Publication date: November 30, 2023
    Inventors: Ping LU, Minhan CHEN
  • Patent number: 11159151
    Abstract: Systems and methods related to calibrating a phase interpolator by amplifying timing differences are described. An example system includes a calibration stage configured to output a calibration code for a phase interpolator. The system further includes control logic configured to: (1) at least partially discharge a first pre-charged capacitive load in response to a signal output by the phase interpolator based on the calibration code, and (2) at least partially discharge a second pre-charged capacitive load in response to a reference signal associated with the phase interpolator. The system further includes a feedback path configured to provide feedback to the calibration stage to allow for a modification of the calibration code, where the feedback is dependent on a first voltage provided by the first pre-charged capacitive load and a second voltage provided by the second pre-charged capacitive load.
    Type: Grant
    Filed: October 28, 2020
    Date of Patent: October 26, 2021
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Ping Lu, Minhan Chen
  • Patent number: 10965442
    Abstract: A receiver is provided that includes a time-to-digital converter for converting a phase difference between a clock signal and a received data signal into a phase-difference digital code. The receiver also includes a logic circuit that controls a programmable delay line to delay the clock signal into a delayed clock signal by a delay that is responsive to a difference between the phase-difference code and a unit interval for the clock signal. The delayed clock signal clocks a flip-flop to register the received data signal.
    Type: Grant
    Filed: October 2, 2018
    Date of Patent: March 30, 2021
    Assignee: QUALCOMM INCORPORATED
    Inventors: Eskinder Hailu, Bupesh Pandita, Jon Boyette, Hadi Goudarzi, Yong Suk Jun, Zhi Zhu, Minhan Chen
  • Publication number: 20200106597
    Abstract: A receiver is provided that includes a time-to-digital converter for converting a phase difference between a clock signal and a received data signal into a phase-difference digital code. The receiver also includes a logic circuit that controls a programmable delay line to delay the clock signal into a delayed clock signal by a delay that is responsive to a difference between the phase-difference code and a unit interval for the clock signal. The delayed clock signal clocks a flip-flop to register the received data signal.
    Type: Application
    Filed: October 2, 2018
    Publication date: April 2, 2020
    Inventors: Eskinder Hailu, Bupesh Pandita, Jon Boyette, Hadi Goudarzi, Yong Suk Jun, Zhi Zhu, Minhan Chen
  • Patent number: 10505705
    Abstract: A receiver is provided that generates a data sampling clock that is offset by clock offset that is a function of a decision feedback equalizer gain to account for a data sampling timing error that would occur without the clock delay.
    Type: Grant
    Filed: December 27, 2018
    Date of Patent: December 10, 2019
    Assignee: QUALCOMM Incorporated
    Inventors: Minhan Chen, Li Sun, Chia Heng Chang, Hadi Goudarzi, Russell Deans
  • Patent number: 10326417
    Abstract: A resistor in a pair of resistors is selectively coupled to a current source through a selection switch during the reset phase of a voltage-mode sense amplifier so that one evaluation node for the voltage-mode sense amplifier is discharged from a power supply voltage by an ohmic voltage drop across the selectively-coupled resistor to null an offset for the voltage-mode sense amplifier.
    Type: Grant
    Filed: December 1, 2017
    Date of Patent: June 18, 2019
    Assignee: QUALCOMM Incorporated
    Inventors: Todd Morgan Rasmus, Minhan Chen
  • Publication number: 20190173440
    Abstract: A resistor in a pair of resistors is selectively coupled to a current source through a selection switch during the reset phase of a voltage-mode sense amplifier so that one evaluation node for the voltage-mode sense amplifier is discharged from a power supply voltage by an ohmic voltage drop across the selectively-coupled resistor to null an offset for the voltage-mode sense amplifier.
    Type: Application
    Filed: December 1, 2017
    Publication date: June 6, 2019
    Inventors: Todd Morgan Rasmus, Minhan Chen
  • Patent number: 10079698
    Abstract: Aspects of the disclosure are directed to determining an offset calibration step size of a sample latch. In accordance with one aspect, the disclosure relate to a Decision Feedback Equalizer (DFE) input section including a E sample latch to output a target signal sample; a E sample digital to analog converter coupled to the E sample latch to input a target voltage to the E sample latch; a sample latch to output a signal sample; and a voltage digital to analog converter coupled to the E sample latch and the sample latch to generate a bias voltage, wherein the bias voltage is inputted to the E sample latch and the sample latch. The DFE input section may further include a latch offset decoder to scale the bias voltage and a summing amplifier to receive an analog input waveform to the DFE input section.
    Type: Grant
    Filed: July 19, 2017
    Date of Patent: September 18, 2018
    Assignee: QUALCOMM Incorporated
    Inventor: Minhan Chen
  • Patent number: 9722823
    Abstract: Systems and methods for providing offset calibration for low power and high performance receivers are described herein. In one embodiment, a receiver comprises a sample latch having a first input coupled to a receive data path, and a second input. The receive also comprises a first digital-to-analog converter (DAC), a second DAC, and a calibration controller. In a calibration mode, the calibration controller is configured to input a calibration voltage to the first input of the sample latch using the first DAC, to input a threshold voltage and an offset-cancelation voltage to the second input of the sample latch using the second DAC, to adjust the offset-cancelation voltage, to observe an output of the sample latch as the offset-cancelation voltage is adjusted, and to store a value of the offset-cancelation voltage at which a metastable state is observed at the output of the sample latch in a memory.
    Type: Grant
    Filed: June 7, 2016
    Date of Patent: August 1, 2017
    Assignee: QUALCOMM Incorporated
    Inventors: Minhan Chen, Kenneth Luis Arcudia
  • Patent number: 9614502
    Abstract: A receiver according to one aspect comprises a latch configured to sample a data signal according to a sampling clock signal, and a plurality of offset-compensation segments, wherein each of the segments is coupled to an internal node of the latch. Each of the segments comprises a compensation transistor, and a step-adjustment transistor coupled in series with the compensation transistor. The receiver further comprises an offset controller configured to selectively turn on one or more of the compensations transistors to reduce an offset voltage of the latch, and a bias circuit configured to apply a bias voltage to a gate of each of one or more of the step-adjustment transistors.
    Type: Grant
    Filed: August 4, 2015
    Date of Patent: April 4, 2017
    Assignee: QUALCOMM Incorporated
    Inventors: Minhan Chen, Kenneth Luis Arcudia
  • Publication number: 20170040983
    Abstract: A receiver according to one aspect comprises a latch configured to sample a data signal according to a sampling clock signal, and a plurality of offset-compensation segments, wherein each of the segments is coupled to an internal node of the latch. Each of the segments comprises a compensation transistor, and a step-adjustment transistor coupled in series with the compensation transistor. The receiver further comprises an offset controller configured to selectively turn on one or more of the compensations transistors to reduce an offset voltage of the latch, and a bias circuit configured to apply a bias voltage to a gate of each of one or more of the step-adjustment transistors.
    Type: Application
    Filed: August 4, 2015
    Publication date: February 9, 2017
    Inventors: Minhan Chen, Kenneth Luis Arcudia
  • Publication number: 20160294583
    Abstract: Systems and methods for providing offset calibration for low power and high performance receivers are described herein. In one embodiment, a receiver comprises a sample latch having a first input coupled to a receive data path, and a second input. The receive also comprises a first digital-to-analog converter (DAC), a second DAC, and a calibration controller. In a calibration mode, the calibration controller is configured to input a calibration voltage to the first input of the sample latch using the first DAC, to input a threshold voltage and an offset-cancelation voltage to the second input of the sample latch using the second DAC, to adjust the offset-cancelation voltage, to observe an output of the sample latch as the offset-cancelation voltage is adjusted, and to store a value of the offset-cancelation voltage at which a metastable state is observed at the output of the sample latch in a memory.
    Type: Application
    Filed: June 7, 2016
    Publication date: October 6, 2016
    Inventors: Minhan Chen, Kenneth Luis Arcudia
  • Patent number: 9444657
    Abstract: Dynamically calibrating an offset of a receiver with a DFE while performing data transport operations, the DFE comprising a plurality of independent data transport banks, at least one data transport bank operating a data transport mode and at least one data transport bank operating in a calibration mode, including: iteratively, while carrying out data transport operations: utilizing the data transport bank operating in the data transport mode to perform data transport operations; calibrating the data transport bank operating in the calibration mode; and upon completing calibration of the data transport bank operating in the calibration mode, switching the mode of each data transport bank.
    Type: Grant
    Filed: July 10, 2013
    Date of Patent: September 13, 2016
    Assignee: International Business Machines Corporation
    Inventors: Minhan Chen, Jieming Qi
  • Publication number: 20160216317
    Abstract: In one embodiment, a method for operating a receiver having a first receiver input and a second receiver input is described herein. The method comprises receiving a data signal via the first and second receiver inputs in a mission mode, AC-coupling the received data signal to an amplifier, and amplifying the AC-coupled data signal using the amplifier. The method also comprises receiving one or more test signals via one or both of the first and second receiver inputs in a test mode, DC-coupling the received one or more test signals to a test receiver, and determining whether there are one or more defects based on the one or more test signals received by the test receiver.
    Type: Application
    Filed: January 22, 2015
    Publication date: July 28, 2016
    Inventors: Minhan Chen, Kenneth Luis Arcudia, Bupesh Pandita
  • Patent number: 9385695
    Abstract: Systems and methods for providing offset calibration for low power and high performance receivers are described herein. In one embodiment, a method for offset calibration comprises inputting a first voltage to a first input of a sample latch, and inputting a second voltage and an offset-cancellation voltage to a second input of the sample latch. The method also comprises adjusting the offset-cancellation voltage, observing an output of the sample latch as the offset-cancellation voltage is adjusted, and recording a value of the offset-cancellation voltage at which a metastable state is observed at the output of the sample latch. The method may be performed for each one of a plurality of different voltage levels for the first voltage to determine an offset-cancellation voltage for each one of the voltage levels.
    Type: Grant
    Filed: June 6, 2014
    Date of Patent: July 5, 2016
    Assignee: QUALCOMM Incorporated
    Inventors: Minhan Chen, Kenneth Luis Arcudia
  • Publication number: 20150358005
    Abstract: Systems and methods for providing offset calibration for low power and high performance receivers are described herein. In one embodiment, a method for offset calibration comprises inputting a first voltage to a first input of a sample latch, and inputting a second voltage and an offset-cancelation voltage to a second input of the sample latch. The method also comprises adjusting the offset-cancelation voltage, observing an output of the sample latch as the offset-cancelation voltage is adjusted, and recording a value of the offset-cancelation voltage at which a metastable state is observed at the output of the sample latch. The method may be performed for each one of a plurality of different voltage levels for the first voltage to determine an offset-cancelation voltage for each one of the voltage levels.
    Type: Application
    Filed: June 6, 2014
    Publication date: December 10, 2015
    Inventors: Minhan Chen, Kenneth Luis Arcudia
  • Patent number: 9209948
    Abstract: Testing a Decision Feedback Equalizer (‘DFE’), the DFE including a summing amplifier operatively coupled to a plurality of latches and an input signal line for receiving a data signal, including: preventing a differential data signal from being received by the summing amplifier; and iteratively for each tap to be tested: setting a tap coefficient for each tap to zero; setting an output of the plurality of latches to a predetermined value; setting a tap coefficient for the tap to be tested to a full scale value; and determining whether a resultant output signal from the DFE matches a predetermined expected output signal.
    Type: Grant
    Filed: January 19, 2015
    Date of Patent: December 8, 2015
    Assignee: International Business Machines Corporation
    Inventors: Eugene R. Atwood, Matthew B. Baecher, Minhan Chen, Hayden C. Cranford, Jr., William R. Kelly, Todd M. Rasmus
  • Patent number: 9184948
    Abstract: A Decision Feedback Equalizer (‘DFE’) that includes: a plurality of input signal lines comprising at least one data signal line and a plurality of power control signal lines; at least one output signal line; and a plurality of independently-controlled isolated power domains, where each independently-controlled isolated power domain is coupled to a corresponding one of the power control signal lines, each of the power control signal lines configured to transmit a power control signal to the independently-controlled isolated power domain dynamically, and each independently-controlled isolated power domain selectively consumes power in response to the power control signal, each independently-controlled isolated power domain configured to be dynamically powered up or powered down without impacting signal processing operations.
    Type: Grant
    Filed: May 28, 2013
    Date of Patent: November 10, 2015
    Assignee: GLOBALFOUNDRIES U.S. 2 LLC
    Inventors: Minhan Chen, Steven M. Clements, Carrie E. Cox, Todd M. Rasmus