Patents by Inventor Minjoo L. Lee

Minjoo L. Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8436336
    Abstract: The invention provides semiconductor structure comprising a strained Ge channel layer, and a gate dielectric disposed over the strained Ge channel layer. In one aspect of the invention, a strained Ge channel MOSFET is provided. The strained Ge channel MOSFET includes a relaxed SiGe virtual substrate with a Ge content between 50-95%, and a strained Ge channel formed on the virtual substrate. A gate structure is formed upon the strained Ge channel, whereupon a MOSFET is formed with increased performance over bulk Si. In another embodiment of the invention, a semiconductor structure comprising a relaxed Ge channel layer and a virtual substrate, wherein the relaxed Ge channel layer is disposed above the virtual substrate. In a further aspect of the invention, a relaxed Ge channel MOSFET is provided. The method includes providing a relaxed virtual substrate with a Ge composition of approximately 100% and a relaxed Ge channel formed on the virtual substrate.
    Type: Grant
    Filed: October 23, 2007
    Date of Patent: May 7, 2013
    Assignee: Massachusetts Institute of Technology
    Inventors: Minjoo L. Lee, Christopher W. Leitz, Eugene A. Fitzgerald
  • Patent number: 8063413
    Abstract: A semiconductor structure is provided. The semiconductor structure includes one or more III-IV material-based semiconductor layers. A tensile-strained Ge layer is formed on the one or more a III-IV material-based semiconductor layers. The tensile-strained Ge layer is produced through lattice-mismatched heteroepitaxy on the one or more a III-IV material-based semiconductor layers.
    Type: Grant
    Filed: November 6, 2008
    Date of Patent: November 22, 2011
    Assignee: Massachusetts Institute of Technology
    Inventors: Yu Bai, Minjoo L. Lee, Eugene A. Fitzgerald
  • Publication number: 20090114902
    Abstract: A semiconductor structure is provided. The semiconductor structure includes one or more III-IV material-based semiconductor layers. A tensile-strained Ge layer is formed on the one or more a III-IV material-based semiconductor layers. The tensile-strained Ge layer is produced through lattice-mismatched heteroepitaxy on the one or more a III-IV material-based semiconductor layers.
    Type: Application
    Filed: November 6, 2008
    Publication date: May 7, 2009
    Inventors: Yu Bai, Minjoo L. Lee, Eugene A. Fitzgerald
  • Publication number: 20080128747
    Abstract: The invention provides semiconductor structure comprising a strained Ge channel layer, and a gate dielectric disposed over the strained Ge channel layer. In one aspect of the invention, a strained Ge channel MOSFET is provided. The strained Ge channel MOSFET includes a relaxed SiGe virtual substrate with a Ge content between 50-95%, and a strained Ge channel formed on the virtual substrate. A gate structure is formed upon the strained Ge channel, whereupon a MOSFET is formed with increased performance over bulk Si. In another embodiment of the invention, a semiconductor structure comprising a relaxed Ge channel layer and a virtual substrate, wherein the relaxed Ge channel layer is disposed above the virtual substrate. In a further aspect of the invention, a relaxed Ge channel MOSFET is provided. The method includes providing a relaxed virtual substrate with a Ge composition of approximately 100% and a relaxed Ge channel formed on the virtual substrate.
    Type: Application
    Filed: October 23, 2007
    Publication date: June 5, 2008
    Inventors: Minjoo L. Lee, Christopher W. Leitz, Eugene A. Fitzgerald
  • Patent number: 7301180
    Abstract: The invention provides semiconductor structure comprising a strained Ge channel layer, and a gate dielectric disposed over the strained Ge channel layer. In one aspect of the invention, a strained Ge channel MOSFET is provided. The strained Ge channel MOSFET includes a relaxed SiGe virtual substrate with a Ge content between 50-95%, and a strained Ge channel formed on the virtual substrate. A gate structure is formed upon the strained Ge channel, whereupon a MOSFET is formed with increased performance over bulk Si. In another embodiment of the invention, a semiconductor structure comprising a relaxed Ge channel layer and a virtual substrate, wherein the relaxed Ge channel layer is disposed above the virtual substrate. In a further aspect of the invention, a relaxed Ge channel MOSFET is provided. The method includes providing a relaxed virtual substrate with a Ge composition of approximately 100% and a relaxed Ge channel formed on the virtual substrate.
    Type: Grant
    Filed: June 18, 2002
    Date of Patent: November 27, 2007
    Assignee: Massachusetts Institute of Technology
    Inventors: Minjoo L. Lee, Christopher W. Leitz, Eugene A. Fitzgerald
  • Patent number: 7141820
    Abstract: A structure including a compressively strained semiconductor layer, the compressively strained layer having a strain greater than or equal to 0.25%. A tensilely strained semiconductor layer may be formed over the compressively strained layer. The compressively strained layer is substantially planar, having a surface roughness characterized in (i) having an average wavelength greater than an average wavelength of a carrier in the compressively strained layer and/or (ii) having an average height less than 10 nm.
    Type: Grant
    Filed: February 27, 2004
    Date of Patent: November 28, 2006
    Assignee: AmberWave Systems Corporation
    Inventors: Minjoo L. Lee, Christopher W. Leitz, Eugene A. Fitzgerald
  • Patent number: 7005668
    Abstract: A method of forming a MOSFET device is provided. The method includes providing a substrate. The method includes forming on the substrate a relaxed SiGe layer having a Ge content between 0.51 and 0.80. Furthermore, the method includes depositing on the relaxed SiGe layer a ?-Si layer.
    Type: Grant
    Filed: June 25, 2003
    Date of Patent: February 28, 2006
    Assignee: Massachusetts Institute of Technology
    Inventors: Minjoo L. Lee, Eugene A. Fitzgerald
  • Patent number: 6916727
    Abstract: A structure includes a tensile strained layer disposed over a substrate, the tensile strained layer having a first thickness. A compressed layer is disposed between the tensile strained layer and the substrate, the compressed layer having a second thickness. The first and second thicknesses are selected to define a first carrier mobility in the tensile strained layer and a second carrier mobility in the compressed layer.
    Type: Grant
    Filed: June 21, 2002
    Date of Patent: July 12, 2005
    Assignee: Massachusetts Institute of Technology
    Inventors: Christopher W. Leitz, Minjoo L. Lee, Eugene A. Fitzgerald
  • Publication number: 20040164318
    Abstract: A structure and a method for forming the structure, the method including forming a compressively strained semiconductor layer, the compressively strained layer having a strain greater than or equal to 0.25%. A tensilely strained semiconductor layer is formed over the compressively strained layer. The compressively strained layer is substantially planar, having a surface roughness characterized in (i) having an average wavelength greater than an average wavelength of a carrier in the compressively strained layer or (ii) having an average height less than 10 nm.
    Type: Application
    Filed: February 27, 2004
    Publication date: August 26, 2004
    Applicant: Massachusetts Institute of Technology
    Inventors: Minjoo L. Lee, Christopher W. Leitz, Eugene A. Fitzgerald
  • Patent number: 6730551
    Abstract: A structure and a method for forming the structure, the method including forming a compressively strained semiconductor layer, the compressively strained layer having a strain greater than or equal to 0.25%. A tensilely strained semiconductor layer is formed over the compressively strained layer. The compressively strained layer is substantially planar, having a surface roughness characterized in (i) having an average wavelength greater than an average wavelength of a carrier in the compressively strained layer or (ii) having an average height less than 10 nm.
    Type: Grant
    Filed: August 2, 2002
    Date of Patent: May 4, 2004
    Assignee: Massachusetts Institute of Technology
    Inventors: Minjoo L. Lee, Christopher W. Leitz, Eugene A. Fitzgerald
  • Publication number: 20040053470
    Abstract: A method of forming a MOSFET device is provided. The method includes providing a substrate. The method includes forming on the substrate a relaxed SiGe layer having a Ge content between 0.51 and 0.80. Furthermore, the method includes depositing on the relaxed SiGe layer a &egr;-Si layer.
    Type: Application
    Filed: June 25, 2003
    Publication date: March 18, 2004
    Inventors: Minjoo L. Lee, Eugene A. Fitzgerald
  • Publication number: 20030052334
    Abstract: The invention provides semiconductor structure comprising a strained Ge channel layer, and a gate dielectric disposed over the strained Ge channel layer. In one aspect of the invention, a strained Ge channel MOSFET is provided. The strained Ge channel MOSFET includes a relaxed SiGe virtual substrate with a Ge content between 50-95%, and a strained Ge channel formed on the virtual substrate. A gate structure is formed upon the strained Ge channel, whereupon a MOSFET is formed with increased performance over bulk Si. In another embodiment of the invention, a semiconductor structure comprising a relaxed Ge channel layer and a virtual substrate, wherein the relaxed Ge channel layer is disposed above the virtual substrate. In a further aspect of the invention, a relaxed Ge channel MOSFET is provided. The method includes providing a relaxed virtual substrate with a Ge composition of approximately 100% and a relaxed Ge channel formed on the virtual substrate.
    Type: Application
    Filed: June 18, 2002
    Publication date: March 20, 2003
    Inventors: Minjoo L. Lee, Christopher W. Leitz, Eugene A. Fitzgerald
  • Publication number: 20030025131
    Abstract: A structure and a method for forming the structure, the method including forming a compressively strained semiconductor layer, the compressively strained layer having a strain greater than or equal to 0.25%. A tensilely strained semiconductor layer is formed over the compressively strained layer. The compressively strained layer is substantially planar, having a surface roughness characterized in (i) having an average wavelength greater than an average wavelength of a carrier in the compressively strained layer or (ii) having an average height less than 10 nm.
    Type: Application
    Filed: August 2, 2002
    Publication date: February 6, 2003
    Applicant: Massachusetts Institute of Technology
    Inventors: Minjoo L. Lee, Christopher W. Leitz, Eugene A. Fitzgerald
  • Publication number: 20020197803
    Abstract: A structure includes a tensile strained layer disposed over a substrate, the tensile strained layer having a first thickness. A compressed layer is disposed between the tensile strained layer and the substrate, the compressed layer having a second thickness. The first and second thicknesses are selected to define a first carrier mobility in the tensile strained layer and a second carrier mobility in the compressed layer.
    Type: Application
    Filed: June 21, 2002
    Publication date: December 26, 2002
    Applicant: AmberWave Systems Corporation
    Inventors: Christopher W. Leitz, Minjoo L. Lee, Eugene A. Fitzgerald