Patents by Inventor Minmin Qin

Minmin Qin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170349643
    Abstract: The invention provides FGFR fusion proteins, methods of making them, and methods of using them to treat proliferative disorders, including cancers and disorders of angiogenesis. The FGFR fusion molecules can be made in CHO cells and may comprise deletion mutations in the extracellular domains of the FGFRs which improve their stability. These fusion proteins inhibit the growth and viability of cancer cells in vitro and in vivo. The combination of the relatively high affinity of these receptors for their ligand FGFs and the demonstrated ability of these decoy receptors to inhibit tumor growth is an indication of the clinical value of the compositions and methods provided herein.
    Type: Application
    Filed: June 12, 2017
    Publication date: December 7, 2017
    Applicant: Five Prime Therapeutics, Inc.
    Inventors: Lewis T. Williams, Elizabeth Bosch, Stephen K. Doberstein, Kevin Hestir, Diane Hollenbaugh, Ernestine Lee, Minmin Qin, Ali Sadra, Justin G.P. Wong, Ge Wu, Hongbing Zhang
  • Publication number: 20160096876
    Abstract: The invention provides FGFR fusion proteins, methods of making them, and methods of using them to treat proliferative disorders, including cancers and disorders of angiogenesis. The FGFR fusion molecules can be made in CHO cells and may comprise deletion mutations in the extracellular domains of the FGFRs which improve their stability. These fusion proteins inhibit the growth and viability of cancer cells in vitro and in vivo. The combination of the relatively high affinity of these receptors for their ligand FGFs and the demonstrated ability of these decoy receptors to inhibit tumor growth is an indication of the clinical value of the compositions and methods provided herein.
    Type: Application
    Filed: October 7, 2015
    Publication date: April 7, 2016
    Inventors: Lewis T. Williams, Elizabeth Bosch, Stephen K. Doberstein, Kevin Hestir, Diane Hollenbaugh, Ernestine Lee, Minmin Qin, Ali Sadra, Justin Wong, Ge Wu, Hongbing Zhang
  • Patent number: 9192683
    Abstract: The invention provides FGFR fusion proteins, methods of making them, and methods of using them to treat proliferative disorders, including cancers and disorders of angiogenesis. The FGFR fusion molecules can be made in CHO cells and may comprise deletion mutations in the extracellular domains of the FGFRs which improve their stability. These fusion proteins inhibit the growth and viability of cancer cells in vitro and in vivo. The combination of the relatively high affinity of these receptors for their ligand FGFs and the demonstrated ability of these decoy receptors to inhibit tumor growth is an indication of the clinical value of the compositions and methods provided herein.
    Type: Grant
    Filed: October 8, 2013
    Date of Patent: November 24, 2015
    Assignee: FIVE PRIME THERAPEUTICS, INC.
    Inventors: Lewis T. Williams, Elizabeth Bosch, Stephen K. Doberstein, Kevin Hestir, Diane Hollenbaugh, Ernestine Lee, Minmin Qin, Ali Sadra, Justin Wong, Ge Wu, Hongbing Zhang
  • Patent number: 9173957
    Abstract: The invention provides FGFR fusion proteins, methods of making them, and methods of using them to treat proliferative disorders, including cancers and disorders of angiogenesis. The FGFR fusion molecules can be made in CHO cells and may comprise deletion mutations in the extracellular domains of the FGFRs which improve their stability. These fusion proteins inhibit the growth and viability of cancer cells in vitro and in vivo. The combination of the relatively high affinity of these receptors for their ligand FGFs and the demonstrated ability of these decoy receptors to inhibit tumor growth is an indication of the clinical value of the compositions and methods provided herein.
    Type: Grant
    Filed: May 29, 2013
    Date of Patent: November 3, 2015
    Assignee: Five Prime Therapeutics, Inc.
    Inventors: Lewis T. Williams, Elizabeth Bosch, Stephen K. Doberstein, Kevin Hestir, Diane Hollenbaugh, Ernestine Lee, Minmin Qin, Ali Sadra, Justin Wong, Ge Wu, Hongbing Zhang
  • Publication number: 20140140995
    Abstract: The invention provides FGFR fusion proteins, methods of making them, and methods of using them to treat proliferative disorders, including cancers and disorders of angiogenesis. The FGFR fusion molecules can be made in CHO cells and may comprise deletion mutations in the extracellular domains of the FGFRs which improve their stability. These fusion proteins inhibit the growth and viability of cancer cells in vitro and in vivo. The combination of the relatively high affinity of these receptors for their ligand FGFs and the demonstrated ability of these decoy receptors to inhibit tumor growth is an indication of the clinical value of the compositions and methods provided herein.
    Type: Application
    Filed: October 8, 2013
    Publication date: May 22, 2014
    Applicant: Five Prime Therapeutics, Inc.
    Inventors: Lewis T. Williams, Elizabeth Bosch, Stephen K. Doberstein, Kevin Hestir, Diane Hollenbaugh, Ernestine Lee, Minmin Qin, Ali Sadra, Justin Wong, Ge Wu, Hongbing Zhang
  • Publication number: 20130324701
    Abstract: The invention provides FGFR fusion proteins, methods of making them, and methods of using them to treat proliferative disorders, including cancers and disorders of angiogenesis. The FGFR fusion molecules can be made in CHO cells and may comprise deletion mutations in the extracellular domains of the FGFRs which improve their stability. These fusion proteins inhibit the growth and viability of cancer cells in vitro and in vivo. The combination of the relatively high affinity of these receptors for their ligand FGFs and the demonstrated ability of these decoy receptors to inhibit tumor growth is an indication of the clinical value of the compositions and methods provided herein.
    Type: Application
    Filed: May 29, 2013
    Publication date: December 5, 2013
    Applicant: FIVE PRIME THERAPEUTICS, INC.
    Inventors: Lewis T. WILLIAMS, Elizabeth BOSCH, Stephen K. DOBERSTEIN, Kevin HESTIR, Diane HOLLENBAUGH, Ernestine LEE, Minmin QIN QIN, Ali SADRA, Justin WONG, Ge WU, Hongbing ZHANG ZHANG
  • Patent number: 8580936
    Abstract: The invention provides FGFR fusion proteins, methods of making them, and methods of using them to treat proliferative disorders, including cancers and disorders of angiogenesis. The FGFR fusion molecules can be made in CHO cells and may comprise deletion mutations in the extracellular domains of the FGFRs which improve their stability. These fusion proteins inhibit the growth and viability of cancer cells in vitro and in vivo. The combination of the relatively high affinity of these receptors for their ligand FGFs and the demonstrated ability of these decoy receptors to inhibit tumor growth is an indication of the clinical value of the compositions and methods provided herein.
    Type: Grant
    Filed: September 7, 2011
    Date of Patent: November 12, 2013
    Assignee: Five Prime Therapeutics, Inc.
    Inventors: Lewis T. Williams, Elizabeth Bosch, Stephen Doberstein, Kevin Hestir, Diane Hollenbaugh, Ernestine Lee, Minmin Qin, Ali Sadra, Justin Wong, Ge Wu, Hongbing Zhang
  • Patent number: 8501191
    Abstract: The invention provides FGFR fusion proteins, methods of making them, and methods of using them to treat proliferative disorders, including cancers and disorders of angiogenesis. The FGFR fusion molecules can be made in CHO cells and may comprise deletion mutations in the extracellular domains of the FGFRs which improve their stability. These fusion proteins inhibit the growth and viability of cancer cells in vitro and in vivo. The combination of the relatively high affinity of these receptors for their ligand FGFs and the demonstrated ability of these decoy receptors to inhibit tumor growth is an indication of the clinical value of the compositions and methods provided herein.
    Type: Grant
    Filed: April 3, 2012
    Date of Patent: August 6, 2013
    Assignee: Five Prime Therapeutics, Inc.
    Inventors: Elizabeth Bosch, Diane Hollenbaugh, Ernestine Lee, Minmin Qin, Ali Sadra
  • Publication number: 20130065276
    Abstract: The invention provides FGFR fusion proteins, methods of making them, and methods of using them to treat proliferative disorders, including cancers and disorders of angiogenesis. The FGFR fusion molecules can be made in CHO cells and may comprise deletion mutations in the extracellular domains of the FGFRs which improve their stability. These fusion proteins inhibit the growth and viability of cancer cells in vitro and in vivo. The combination of the relatively high affinity of these receptors for their ligand FGFs and the demonstrated ability of these decoy receptors to inhibit tumor growth is an indication of the clinical value of the compositions and methods provided herein.
    Type: Application
    Filed: September 7, 2011
    Publication date: March 14, 2013
    Inventors: Lewis T. WILLIAMS, Elizabeth Bosch, Stephen Doberstein, Kevin Hestir, Diane Hollenbaugh, Ernestine Lee, Minmin Qin, Ali Sadra, Justin Wong, Ge Wu, Hongbing Zhang
  • Publication number: 20120301921
    Abstract: The invention provides FGFR fusion proteins, methods of making them, and methods of using them to treat proliferative disorders, including cancers and disorders of angiogenesis. The FGFR fusion molecules can be made in CHO cells and may comprise deletion mutations in the extracellular domains of the FGFRs which improve their stability. These fusion proteins inhibit the growth and viability of cancer cells in vitro and in vivo. The combination of the relatively high affinity of these receptors for their ligand FGFs and the demonstrated ability of these decoy receptors to inhibit tumor growth is an indication of the clinical value of the compositions and methods provided herein.
    Type: Application
    Filed: April 3, 2012
    Publication date: November 29, 2012
    Inventors: Lewis T. Williams, Elizabeth Bosch, Stephen Doberstein, Kevin Hestir, Diane Hollenbaugh, Ernestine Lee, Minmin Qin, Ali Sadra, Justin Wong, Ge Wu, Hongbing Zhang
  • Patent number: 8173134
    Abstract: The invention provides FGFR fusion proteins, methods of making them, and methods of using them to treat proliferative disorders, including cancers and disorders of angiogenesis. The FGFR fusion molecules can be made in CHO cells and may comprise deletion mutations in the extracellular domains of the FGFRs which improve their stability. These fusion proteins inhibit the growth and viability of cancer cells in vitro and in vivo. The combination of the relatively high affinity of these receptors for their ligand FGFs and the demonstrated ability of these decoy receptors to inhibit tumor growth is an indication of the clinical value of the compositions and methods provided herein.
    Type: Grant
    Filed: June 10, 2011
    Date of Patent: May 8, 2012
    Assignee: Five Prime Therapeutics, Inc.
    Inventors: Elizabeth Bosch, Diane Hollenbaugh, Ernestine Lee, Minmin Qin, Ali Sadra
  • Publication number: 20110319324
    Abstract: The present invention relates to therapeutic uses of ErbB ligands, including betacellulin. The therapeutic uses include methods of using ErbB ligand family compounds alone, or in conjunction with other agents, for reducing blood glucose levels, treating Type I and Type II diabetes, obesity, muscle wasting diseases, and cardiotoxicity.
    Type: Application
    Filed: November 29, 2010
    Publication date: December 29, 2011
    Inventors: Junyu Lin, Srinivas Kothakota, Ge Wu, Stephen Doberstein, Thomas Brennan, Lorianne Masuoka, Minmin Qin, Shannon Marshall, Yan Wang, Diane Hollenbaugh, Lewis T. Williams
  • Publication number: 20110281302
    Abstract: The invention provides FGFR fusion proteins, methods of making them, and methods of using them to treat proliferative disorders, including cancers and disorders of angiogenesis. The FGFR fusion molecules can be made in CHO cells and may comprise deletion mutations in the extracellular domains of the FGFRs which improve their stability. These fusion proteins inhibit the growth and viability of cancer cells in vitro and in vivo. The combination of the relatively high affinity of these receptors for their ligand FGFs and the demonstrated ability of these decoy receptors to inhibit tumor growth is an indication of the clinical value of the compositions and methods provided herein.
    Type: Application
    Filed: June 10, 2011
    Publication date: November 17, 2011
    Inventors: Lewis T. WILLIAMS, Elizabeth Bosch, Stephen Doberstein, Kevin Hestir, Diane Hollenbaugh, Ernestine Lee, Minmin Qin, Ali Sadra, Justin Wong, Ge Wu, Hongbing Zhang
  • Patent number: 7982014
    Abstract: The invention provides FGFR fusion proteins, methods of making them, and methods of using them to treat proliferative disorders, including cancers and disorders of angiogenesis. The FGFR fusion molecules can be made in CHO cells and may comprise deletion mutations in the extracellular domains of the FGFRs which improve their stability. These fusion proteins inhibit the growth and viability of cancer cells in vitro and in vivo. The combination of the relatively high affinity of these receptors for their ligand FGFs and the demonstrated ability of these decoy receptors to inhibit tumor growth is an indication of the clinical value of the compositions and methods provided herein.
    Type: Grant
    Filed: January 5, 2010
    Date of Patent: July 19, 2011
    Assignee: Five Prime Therapeutics, Inc.
    Inventors: Lewis T. Williams, Elizabeth Bosch, Stephen Doberstein, Kevin Hestir, Diane Hollenbaugh, Ernestine Lee, Minmin Qin, Ali Sadra, Justin Wong, Ge Wu, Hongbing Zhang
  • Publication number: 20100158911
    Abstract: The invention provides FGFR fusion proteins, methods of making them, and methods of using them to treat proliferative disorders, including cancers and disorders of angiogenesis. The FGFR fusion molecules can be made in CHO cells and may comprise deletion mutations in the extracellular domains of the FGFRs which improve their stability. These fusion proteins inhibit the growth and viability of cancer cells in vitro and in vivo. The combination of the relatively high affinity of these receptors for their ligand FGFs and the demonstrated ability of these decoy receptors to inhibit tumor growth is an indication of the clinical value of the compositions and methods provided herein.
    Type: Application
    Filed: January 5, 2010
    Publication date: June 24, 2010
    Inventors: Lewis T. Williams, Elizabeth Bosch, Stephen Doberstein, Kevin Hestir, Diane Hollenbaugh, Ernestine Lee, Minmin Qin, Ali Sadra, Justin Wong, Ge Wu, Hongbing Zhang
  • Patent number: 7678890
    Abstract: The invention provides FGFR fusion proteins, methods of making them, and methods of using them to treat proliferative disorders, including cancers and disorders of angiogenesis. The FGFR fusion molecules can be made in CHO cells and may comprise deletion mutations in the extracellular domains of the FGFRs which improve their stability. These fusion proteins inhibit the growth and viability of cancer cells in vitro and in vivo. The combination of the relatively high affinity of these receptors for their ligand FGFs and the demonstrated ability of these decoy receptors to inhibit tumor growth is an indication of the clinical value of the compositions and methods provided herein.
    Type: Grant
    Filed: July 24, 2006
    Date of Patent: March 16, 2010
    Assignee: Five Prime Therapeutics, Inc.
    Inventors: Elizabeth Bosch, Diane Hollenbaugh, Ernestine Lee, Minmin Qin, Ali Sadra
  • Publication number: 20080260715
    Abstract: The present invention provides a highly purified recombinant human precursor N-acetylgalactosamine-4-sulfatase and biologically active mutants, fragments and analogs thereof as well as pharmaceutical formulations comprising highly purified recombinant human precursor N-acetylgalactosamine-4-sulfatase. The invention also provides methods for treating diseases caused all or in part by deficiencies in human N-acetylgalactosamine-4-sulfatase including MPS VI and methods for producing and purifying the recombinant precursor enzyme to a highly purified form.
    Type: Application
    Filed: May 18, 2007
    Publication date: October 23, 2008
    Applicant: BIOMARIN PHARMACEUTICAL INC.
    Inventors: Minmin Qin, Gary N. Zecherle, Wai-Pan Chan, Paul A. Fitzpatrick, Stuart Swiedler, John M. Henstrand, Dan J. Wendt, Lin Chen, Christopher M. Starr
  • Publication number: 20080171689
    Abstract: The invention provides FGFR fusion proteins, methods of making them, and methods of using them to treat proliferative disorders, including cancers and disorders of angiogenesis. The FGFR fusion molecules can be made in CHO cells and may comprise deletion mutations in the extracellular domains of the FGFRs which improve their stability. These fusion proteins inhibit the growth and viability of cancer cells in vitro and in vivo. The combination of the relatively high affinity of these receptors for their ligand FGFs and the demonstrated ability of these decoy receptors to inhibit tumor growth is an indication of the clinical value of the compositions and methods provided herein.
    Type: Application
    Filed: July 24, 2006
    Publication date: July 17, 2008
    Inventors: Lewis T. Williams, Elizabeth Bosch, Stephen Doberstein, Kevin Hestir, Diane Hollenbaugh, Ernestine Lee, Minmin Qin, Ali Sadra, Justin Wong, Ge Wu, Hongbing Zhang
  • Publication number: 20070054851
    Abstract: The present invention relates to therapeutic uses of ErbB ligands, including betacellulin. The therapeutic uses include methods of using ErbB ligand family compounds alone, or in conjunction with other agents, for reducing blood glucose levels, treating Type I and Type II diabetes, obesity, muscle wasting diseases, and cardiotoxicity.
    Type: Application
    Filed: May 30, 2006
    Publication date: March 8, 2007
    Inventors: Junyu Lin, Srinivas Kothakota, Ge Wu, Stephen Doberstein, Thomas Brennan, Lorianne Masuoka, Minmin Qin, Shannon Marshall, Yan Wang, Diane Hollenbaugh, Lewis Williams
  • Publication number: 20060040348
    Abstract: The present invention provides a recombinant human ?-L-iduronidase and biologically active fragments and muteins thereof with a purity greater than 99%. The present invention further provides large-scale methods to produce and purify commercial grade recombinant human ?-L-iduronidase enzyme thereof.
    Type: Application
    Filed: November 24, 2003
    Publication date: February 23, 2006
    Inventors: Minmin Qin, Wai-Pan Chan, Lin Chen, Paul Fitzpatrick, John Henstrand, Dan Wendt, Gary Zecherle, Christopher Starr, Emil Kakkis