Patents by Inventor Minnie Ho

Minnie Ho has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20040125859
    Abstract: A method and apparatus are disclosed to generate and/or receive ultra-wide bandwidth (UWB) pulses using a digital clock.
    Type: Application
    Filed: December 31, 2002
    Publication date: July 1, 2004
    Inventors: Evan Green, Minnie Ho, Jeffrey Foerster
  • Publication number: 20040047285
    Abstract: A sub-banded ultra-wideband (SB-UWB) system may combine aspects of an orthogonal frequency division multiplexing (OFDM) modulation scheme with aspects of an ultra-wideband system. In one embodiment, the system may use orthogonal waveforms to form an ultra-wideband wireless communications system. In another embodiment, an FFT based implementation of the system may be used to generate and detect an SB-UWB waveform.
    Type: Application
    Filed: September 11, 2002
    Publication date: March 11, 2004
    Inventors: Jeffrey R. Foerster, Minnie Ho, V. Srinivasa Somayazulu, Keith R. Tinsley
  • Publication number: 20040042561
    Abstract: Ultra-wideband, spread-spectrum, or ultra-wideband, spread-spectrum differential pulse communications are disclosed.
    Type: Application
    Filed: August 30, 2002
    Publication date: March 4, 2004
    Inventors: Minnie Ho, Jeffrey R. Foerster
  • Publication number: 20030210909
    Abstract: A frequency division multiplexing (FDM) node used in optical communications networks provides add-drop multiplexing (ADM) functionality between optical high-speed channels and electrical low-speed channels. The FDM node includes a high-speed system and an ADM crosspoint. The high-speed system converts between an optical high-speed channel and its constituent electrical low-speed channels through the use of frequency division multiplexing and preferably also QAM modulation. The ADM crosspoint couples incoming low-speed channels to outgoing low-speed channels, thus implementing the ADM functionality for the FDM node.
    Type: Application
    Filed: March 4, 2003
    Publication date: November 13, 2003
    Inventors: Michael W. Rowan, David B. Upham, Augustus Elmer, Laurence J. Newell, David A. Pechner, Abraham Kou, James F. Coward, Norman L. Swenson, Minnie Ho, Peter H. Chang, Ting K. Yee, Stuart E. Wilson
  • Patent number: 6621851
    Abstract: A discrete multitone stacked-carrier spread spectrum communication method is based on frequency domain spreading including multiplication of a baseband signal by a set of superimposed, or stacked, complex sinusoid carrier waves. In a preferred embodiment, the spreading involves energizing the bins of a large Fast Fourier transform (FFT). This provides a considerable savings in computational complexity for moderate output FFT sizes. Point-to-multipoint and multipoint-to-multipoint (nodeless) network topologies are possible. A code-nulling method is included for interference cancellation and enhanced signal separation by exploiting the spectral diversity of the various sources. The basic method may be extended to include multielement antenna array nulling methods for interference cancellation and enhanced signal separation using spatial separation. Such methods permit directive and retrodirective transmission systems that adapt or can be adapted to the radio environment.
    Type: Grant
    Filed: November 28, 2000
    Date of Patent: September 16, 2003
    Assignee: AT&T Wireless Services, Inc.
    Inventors: Brian G. Agee, Matthew Bromberg, Derek Gerlach, David Gibbons, James Timothy Golden, Minnie Ho, Elliott Hoole, Mary Jesse, Robert Lee Maxwell, Robert G. Mechaley, Jr., Robert Ray Naish, David J. Nix, David James Ryan, David Stephenson
  • Publication number: 20030072273
    Abstract: A decentralized network that transmit data between devices using UWB signals. A device needing a data transmission participates in a contention phase after the system is idle for a predetermined amount of time. The device then generates a packet that includes a control header having synchronization data and transmits the packet to a receiving device.
    Type: Application
    Filed: September 9, 2002
    Publication date: April 17, 2003
    Inventors: G. Roberto Aiello, James L. Taylor, Minnie Ho
  • Patent number: 6529303
    Abstract: A frequency division multiplexing (FDM) node used in optical communications networks provides add-drop multiplexing (ADM) functionality between optical high-speed channels and electrical low-speed channels. The FDM node includes a high-speed system and an ADM crosspoint. The high-speed system converts between an optical high-speed channel and its constituent electrical low-speed channels through the use of frequency division multiplexing and preferably also QAM modulation. The ADM crosspoint couples incoming low-speed channels to outgoing low-speed channels, thus implementing the ADM functionality for the FDM node.
    Type: Grant
    Filed: September 24, 1999
    Date of Patent: March 4, 2003
    Assignee: Kestrel Solutions, Inc.
    Inventors: Michael W. Rowan, David B. Upham, Augustus Elmer, Laurence J. Newell, David A. Pechner, Abraham Kou, James F. Coward, Norman L. Swenson, Minnie Ho, Peter H. Chang, Ting K. Yee, Stuart E. Wilson
  • Patent number: 6452945
    Abstract: A frequency division multiplexing (FDM) node used in optical communications networks provides add-drop multiplexing (ADM) functionality between optical high-speed channels, and low-speed tributaries. The FDM node includes a high-speed system and an ADM crosspoint. The high-speed system converts between an optical high-speed channel and its constituent electrical, low-speed channels through the use of frequency division multiplexing. The ADM crosspoint couples any incoming low-speed channels and any incoming tributaries to any outgoing low-speed channels and tributaries, thus implementing the ADM functionality for the FDM node.
    Type: Grant
    Filed: January 13, 1999
    Date of Patent: September 17, 2002
    Assignee: Kestrel Solutions, Inc.
    Inventors: David B. Upham, Augustus Elmer, Laurence J. Newell, David A. Pechner, Abraham Kou, Michael W. Rowan, James F. Coward, Norman L. Swenson, Minnie Ho
  • Publication number: 20020122465
    Abstract: A discrete multitone stacked-carrier spread spectrum communication method is based on frequency domain spreading including multiplication of a baseband signal by a set of superimposed, or stacked, complex sinusoid carrier waves. In a preferred embodiment, the spreading involves energizing the bins of a large Fast Fourier transform (FFT). This provides a considerable savings in computational complexity for moderate output FFT sizes. Point-to-multipoint and multipoint-to-multipoint (nodeless) network topologies are possible. A code-nulling method is included for interference cancellation and enhanced signal separation by exploiting the spectral diversity of the various sources. The basic method may be extended to include multielement antenna array nulling methods for interference cancellation and enhanced signal separation using spatial separation. Such methods permit directive and retrodirective transmission systems that adapt or can be adapted to the radio environment.
    Type: Application
    Filed: August 3, 2001
    Publication date: September 5, 2002
    Inventors: Brian G. Agee, Matthew Bromberg, Derek Gerlach, David Gibbons, James Timothy Golden, Minnie Ho, Elliott Hoole, Mary Jesse, Robert Lee Maxwell, Robert G. Mechaley, Robert Ray Naish, David J. Nix, David James Ryan, David Stephenson
  • Patent number: 6359923
    Abstract: A discrete multitone stacked-carrier spread spectrum communication method is based on frequency domain spreading including multiplication of a baseband signal by a set of superimposed, or stacked, complex sinusoid carrier waves. In a preferred embodiment, the spreading involves energizing the bins of a large Fast Fourier transform (FFT). This provides a considerable savings in computational complexity for moderate output FFT sizes. Point-to-multipoint and multipoint-to-multipoint (nodeless) network topologies are possible. A code-nulling method is included for interference cancellation and enhanced signal separation by exploiting the spectral diversity of the various sources. The basic method may be extended to include multielement antenna array nulling methods for interference cancellation and enhanced signal separation using spatial separation. Such methods permit directive and retrodirective rev transmission systems that adapt or can be adapted to the radio environment.
    Type: Grant
    Filed: December 18, 1997
    Date of Patent: March 19, 2002
    Assignee: AT&T Wireless Services, Inc.
    Inventors: Brian G. Agee, Matthew Bromberg, Derek Gerlach, David Gibbons, James Timothy Golden, Minnie Ho, Elliott Hoole, Mary Jesse, Robert Lee Maxwell, Robert G. Mechaley, Jr., Robert Ray Naish, David J. Nix, David James Ryan, David Stephenson
  • Patent number: 5317596
    Abstract: A method of echo cancellation in a full-duplex data communication system with discrete multitone modulation, comprised of an initial step of initializing a set of frequency-domain echo parameters and a set of corresponding time-domain echo parameters, and further including the repeating steps of block multiplying a frequency-domain transmit block of a transmitted signal by the set of frequency-domain echo parameters to produce a frequency-domain echo, converting the frequency-domain transmit block to a time-domain transmit block, subtracting the end of the previous time-domain transmit block from the end of the current time-domain transmit block, performing a convolution of the adjusted time-domain transmit block and the time-domain echo parameters to produce a time-domain echo, subtracting the time-domain echo from a time-domain receive block of a received signal, converting the resulting signal to the frequency-domain to produce a frequency-domain receive block, subtracting the frequency-domain echo from th
    Type: Grant
    Filed: December 1, 1992
    Date of Patent: May 31, 1994
    Assignee: The Board of Trustees of the Leland Stanford, Junior University
    Inventors: Minnie Ho, John M. Cioffi