Patents by Inventor Minoru Amano

Minoru Amano has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120241827
    Abstract: A magnetoresistive element according to an embodiment includes: a first to third ferromagnetic layers, and a first nonmagnetic layer, the first and second ferromagnetic layers each having an axis of easy magnetization in a direction perpendicular to a film plane, the third ferromagnetic layer including a plurality of ferromagnetic oscillators generating rotating magnetic fields of different oscillation frequencies from one another. Spin-polarized electrons are injected into the first ferromagnetic layer and induce precession movements in the plurality of ferromagnetic oscillators of the third ferromagnetic layer by flowing a current between the first and third ferromagnetic layers, the rotating magnetic fields are generated by the precession movements and are applied to the first ferromagnetic layer, and at least one of the rotating magnetic fields assists a magnetization switching in the first ferromagnetic layer.
    Type: Application
    Filed: August 16, 2011
    Publication date: September 27, 2012
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Tadaomi DAIBOU, Minoru Amano, Daisuke Saida, Junichi Ito, Yuichi Ohsawa, Chikayoshi Kamata, Saori Kashiwada, Hiroaki Yoda
  • Publication number: 20120243308
    Abstract: According to one embodiment, a magnetic element includes first and second conductive layers, an intermediate interconnection, and first and second stacked units. The intermediate interconnection is provided between the conductive layers. The first stacked unit is provided between the first conductive layer and the interconnection, and includes first and second ferromagnetic layer and a first nonmagnetic layer provided between the first and second ferromagnetic layers. The second stacked unit is provided between the second conductive layer and the interconnection, and includes third and fourth ferromagnetic layers and a second nonmagnetic layer provided between the third and fourth ferromagnetic layers. A magnetization direction of the second ferromagnetic layer is determined by causing a spin-polarized electron and a magnetic field to act on the second ferromagnetic layer.
    Type: Application
    Filed: September 8, 2011
    Publication date: September 27, 2012
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Daisuke SAIDA, Minoru AMANO, Junichi ITO, Yuichi OHSAWA, Saori KASHIWADA, Chikayoshi KAMATA, Tadaomi DAIBOU
  • Publication number: 20120241881
    Abstract: A magnetoresistive element according to an embodiment includes: a base layer; a first magnetic layer formed on the base layer, and including a first magnetic film having an axis of easy magnetization in a direction perpendicular to a film plane, the first magnetic film including MnxGa100-x (45?x<64 atomic %); a first nonmagnetic layer formed on the first magnetic layer; and a second magnetic layer formed on the first nonmagnetic layer, and including a second magnetic film having an axis of easy magnetization in a direction perpendicular to a film plane, the second magnetic film including MnyGa100-y (45?y<64 atomic %). The first and second magnetic layers include different Mn composition rates from each other, a magnetization direction of the first magnetic layer is changeable by a current flowing between the first magnetic layer and the second magnetic layer via the first nonmagnetic layer.
    Type: Application
    Filed: December 2, 2011
    Publication date: September 27, 2012
    Applicants: Tohoku University, KABUSHIKI KAISHA TOSHIBA
    Inventors: Tadaomi DAIBOU, Junichi Ito, Tadashi Kai, Minoru Amano, Hiroaki Yoda, Terunobu Miyazaki, Shigemi Mizukami, Koji Ando, Kay Yakushiji, Shinji Yuasa, Hitoshi Kubota, Akio Fukushima, Taro Nagahama, Takahide Kubota
  • Publication number: 20120236633
    Abstract: According to one embodiment, a magnetic recording element includes a stacked body. The stacked body includes a first and a second stacked unit. The first stacked unit includes first and second ferromagnetic layers and a first nonmagnetic layer. The first nonmagnetic layer is provided between the first and second ferromagnetic layers. The second stacked unit is stacked with the first stacked unit and includes third and fourth ferromagnetic layers and a second nonmagnetic layer. The fourth ferromagnetic layer is stacked with the third ferromagnetic layer. The second nonmagnetic layer is provided between the third and fourth ferromagnetic layers. An outer edge of the fourth ferromagnetic layer includes a portion outside an outer edge of the first stacked unit in a plane. A magnetization direction of the second ferromagnetic layer is determined by causing a spin-polarized electron and a rotating magnetic field to act on the second ferromagnetic layer.
    Type: Application
    Filed: September 8, 2011
    Publication date: September 20, 2012
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Daisuke SAIDA, Minoru AMANO, Junichi ITO, Yuichi OHSAWA, Saori KASHIWADA, Chikayoshi KAMATA, Tadaomi DAIBOU
  • Publication number: 20120230091
    Abstract: According to one embodiment, a magnetic memory includes at least one memory cell including a magnetoresistive element, and first and second electrodes. The element includes a first magnetic layer, a tunnel barrier layer, a second magnetic layer, and a third magnetic layer provided on the second magnetic layer and having a magnetization antiparallel to the magnetization direction of the second magnetic layer. A diameter of an upper surface of the first magnetic layer is smaller than that of a lower surface of the tunnel barrier layer. A diameter of a lower surface of the second magnetic layer is not more than that of an upper surface of the tunnel barrier layer.
    Type: Application
    Filed: March 21, 2012
    Publication date: September 13, 2012
    Inventors: Satoshi YANAGI, Eiji KITAGAWA, Masahiko NAKAYAMA, Jyunichi OZEKI, Hisanori AIKAWA, Naoharu SHIMOMURA, Masatoshi YOSHIKAWA, Minoru AMANO, Shigeki TAKAHASHI, Hiroaki YODA
  • Publication number: 20120115250
    Abstract: A method of forming a concave-convex pattern according to an embodiment includes: forming a guide pattern on a base material, the guide pattern having a convex portion; forming a formative layer on the guide pattern, the formative layer including a stacked structure formed by stacking a first layer and a second layer, the first layer including at least one element selected from a first metal element and a metalloid element, the second layer including a second metal element different from the first metal element; selectively leaving the formative layer only at side faces of the convex portions by performing etching on the formative layer; removing the guide pattern; and forming the concave-convex pattern in the base material by performing etching on the base material, with the remaining formative layer being used as a mask.
    Type: Application
    Filed: November 18, 2011
    Publication date: May 10, 2012
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Tomotaka Ariga, Yuichi Ohsawa, Junichi Ito, Yoshinari Kurosaki, Saori Kashiwada, Toshiro Hiraoka, Minoru Amano, Satoshi Yanagi
  • Publication number: 20120074511
    Abstract: A magnetic memory according to an embodiment includes: at least one memory cell comprising a magnetoresistive element as a memory element, and first and second electrodes that energize the magnetoresistive element. The magnetoresistive element includes: a first magnetic layer having a variable magnetization direction perpendicular to a film plane; a tunnel barrier layer on the first magnetic layer; and a second magnetic layer on the tunnel barrier layer, and having a fixed magnetization direction perpendicular to the film plane. The first magnetic layer including: a first region; and a second region outside the first region so as to surround the first region, and having a smaller perpendicular magnetic anisotropy energy than that of the first region. The second magnetic layer including: a third region; and a fourth region outside the third region, and having a smaller perpendicular magnetic anisotropy energy than that of the third region.
    Type: Application
    Filed: September 13, 2011
    Publication date: March 29, 2012
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Shigeki TAKAHASHI, Yuichi OHSAWA, Junichi ITO, Chikayoshi KAMATA, Saori KASHIWADA, Minoru AMANO, Hiroaki YODA
  • Publication number: 20120068281
    Abstract: According to one embodiment, a magnetic recording element includes a stacked body including a first stacked unit and a second stacked unit. The first stacked unit includes a first ferromagnetic layer, a second ferromagnetic layer and a first nonmagnetic layer. Magnetization of the first ferromagnetic layer is substantially fixed in a first direction being perpendicular to a first ferromagnetic layer surface. The second stacked unit includes a third ferromagnetic layer, a fourth ferromagnetic layer and a second nonmagnetic layer. Magnetization of the fourth ferromagnetic layer is substantially fixed in a second direction being perpendicular to a fourth ferromagnetic layer surface. The first direction is opposite to the second direction.
    Type: Application
    Filed: March 1, 2011
    Publication date: March 22, 2012
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: DAISUKE SAIDA, MINORU AMANO, JUNICHI ITO, YUICHI OHSAWA, SAORI KASHIWADA, CHIKAYOSHI KAMATA, SHIGEKI TAKAHASHI
  • Patent number: 8098514
    Abstract: A magnetoresistive element includes a first reference layer having magnetic anisotropy perpendicular to a film surface, and an invariable magnetization, a recording layer having a stacked structure formed by alternately stacking magnetic layers and nonmagnetic layers, magnetic anisotropy perpendicular to a film surface, and a variable magnetization, and an intermediate layer provided between the first reference layer and the recording layer, and containing a nonmagnetic material. The magnetic layers include a first magnetic layer being in contact with the intermediate layer and a second magnetic layer being not in contact with the intermediate layer. The first magnetic layer contains an alloy containing cobalt (Co) and iron (Fe), and has a film thickness larger than that of the second magnetic layer.
    Type: Grant
    Filed: September 18, 2008
    Date of Patent: January 17, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Toshihiko Nagase, Katsuya Nishiyama, Tadashi Kai, Masahiko Nakayama, Makoto Nagamine, Minoru Amano, Masatoshi Yoshikawa, Tatsuya Kishi, Hiroaki Yoda
  • Patent number: 8081505
    Abstract: A magnetoresistive element includes a stacked structure including a fixed layer having a fixed direction of magnetization, a recording layer having a variable direction of magnetization, and a nonmagnetic layer sandwiched between the fixed layer and the recording layer, a first protective film covering a circumferential surface of the stacked structure, and made of silicon nitride, and a second protective film covering a circumferential surface of the first protective film, and made of silicon nitride. A hydrogen content in the first protective film is not more than 4 at %, and a hydrogen content in the second protective film is not less than 6 at %.
    Type: Grant
    Filed: September 9, 2009
    Date of Patent: December 20, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takeshi Kajiyama, Yoshiaki Asao, Shigeki Takahashi, Minoru Amano, Kuniaki Sugiura
  • Publication number: 20110294291
    Abstract: According to one embodiment, a semiconductor device includes a switch element provided in a surface area of a semiconductor substrate, a contact plug with an upper surface and a lower surface, and a function element provided on the upper surface of the contact plug. The lower surface of the contact plug is connected to the switch element. The upper surface of the contact plug has a maximum roughness of 0.2 nm or less.
    Type: Application
    Filed: February 25, 2011
    Publication date: December 1, 2011
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Yukiteru Matsui, Gaku Minamihaba, Hajime Eda, Masayoshi Iwayama, Minoru Amano, Masatoshi Yoshikawa, Motoyuki Sato, Kyoichi Suguro, Masako Kodera
  • Patent number: 8058080
    Abstract: A magnetic material of a magnetoresistive element is formed on a lower electrode. An upper electrode is formed on the magnetic material. A resist for nano-imprint lithography is formed on the upper electrode. A first pattern or a second pattern is formed in the resist by setting a first template or a second template into contact with the resist and curing the resist. The first template has the first pattern that corresponds to the magnetoresistive element and the lower electrode. The second template has the second pattern that corresponds to the magnetoresistive element and the upper electrode. The magnetic material and the lower electrode are patterned at the same time by using the resist having the first pattern, or the magnetic material and the upper electrode are patterned at the same time by using the resist having the second pattern.
    Type: Grant
    Filed: February 3, 2010
    Date of Patent: November 15, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takeshi Kajiyama, Yoshiaki Asao, Minoru Amano, Shigeki Takahashi, Masayoshi Iwayama, Kuniaki Sugiura
  • Publication number: 20110254112
    Abstract: A semiconductor memory device includes a semiconductor substrate, and plural switching transistors provided on the semiconductor substrate. A contact plug is embedded between the adjacent two switching transistors described above, is insulated from gates of the adjacent two switching transistors, and is electrically connected to diffusion layers of the adjacent two switching transistors. An upper connector is formed on the contact plug, and an upper surface is at a position higher than upper surfaces of the switching transistors. A memory element is provided on the upper surface of the upper connector, and stores data. A wiring is provided on the memory element.
    Type: Application
    Filed: January 27, 2011
    Publication date: October 20, 2011
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Takaya YAMANAKA, Yoshiaki ASAO, Takeshi KAJIYAMA, Minoru AMANO, Masayoshi IWAYAMA, Kuniaki SUGIURA, Yukinori KOYAMA
  • Publication number: 20100197044
    Abstract: A magnetic material of a magnetoresistive element is formed on a lower electrode. An upper electrode is formed on the magnetic material. A resist for nano-imprint lithography is formed on the upper electrode. A first pattern or a second pattern is formed in the resist by setting a first template or a second template into contact with the resist and curing the resist. The first template has the first pattern that corresponds to the magnetoresistive element and the lower electrode. The second template has the second pattern that corresponds to the magnetoresistive element and the upper electrode. The magnetic material and the lower electrode are patterned at the same time by using the resist having the first pattern, or the magnetic material and the upper electrode are patterned at the same time by using the resist having the second pattern.
    Type: Application
    Filed: February 3, 2010
    Publication date: August 5, 2010
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Takeshi KAJIYAMA, Yoshiaki ASAO, Minoru AMANO, Shigeki TAKAHASHI, Masayoshi IWAYAMA, Kuniaki SUGIURA
  • Publication number: 20100193850
    Abstract: First and second transistors are formed on a substrate. An interlayer insulating film is formed on the first transistor. A first contact is formed in the interlayer film on a source or a drain of the first transistor. A second contact is formed in the interlayer film on the other of the source or the drain. A first interconnect is formed on the first contact. A magnetoresistive element is formed on the second contact. The magnetoresistive element is arranged in a layer having a height equal to that of the first interconnect from a substrate surface. A third contact is formed in the interlayer film on a source or a drain of the second transistor. A second interconnect is formed on the third contact. The second interconnect is arranged in a layer having a height equal to those of the first interconnect and the magnetoresistive element from the substrate surface.
    Type: Application
    Filed: February 1, 2010
    Publication date: August 5, 2010
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Yoshiaki ASAO, Takeshi KAJIYAMA, Minoru AMANO, Yoshikuni TATEYAMA, Atsushi SHIGETA
  • Publication number: 20100102407
    Abstract: A magnetoresistive element includes a stacked structure including a fixed layer having a fixed direction of magnetization, a recording layer having a variable direction of magnetization, and a nonmagnetic layer sandwiched between the fixed layer and the recording layer, a first protective film covering a circumferential surface of the stacked structure, and made of silicon nitride, and a second protective film covering a circumferential surface of the first protective film, and made of silicon nitride. A hydrogen content in the first protective film is not more than 4 at %, and a hydrogen content in the second protective film is not less than 6 at %.
    Type: Application
    Filed: September 9, 2009
    Publication date: April 29, 2010
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Takeshi Kajiyama, Yoshiaki Asao, Shigeki Takahashi, Minoru Amano, Kuniaki Sugiura
  • Publication number: 20100097846
    Abstract: A magnetic memory includes an interlayer insulation layer provided on a substrate, a conductive underlying layer provided on the interlayer insulation layer, and a magnetoresistive element provided on the underlying layer and including two magnetic layers and a nonmagnetic layer interposed between the magnetic layers. The underlying layer has an etching rate lower than an etching rate of each of the magnetic layers.
    Type: Application
    Filed: September 21, 2009
    Publication date: April 22, 2010
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Kuniaki Sugiura, Takeshi Kajiyama, Yoshiaki Asao, Shigeki Takahashi, Minoru Amano
  • Patent number: 7692902
    Abstract: A TMR device comprising an antiferromagnetic layer made of an antiferromagnetic material containing Mn, a magnetization fixed layer made of a ferromagnetic material, a tunnel barrier layer made of a dielectric material, and a magnetization free layer made of a ferromagnetic material. An insulator material layer is inserted in the magnetization fixed layer at a distance from the antiferromagnetic material layer and the tunnel barrier layer. One material can be expressed by NX, where X is a first element selected from the group consisting of oxygen, nitrogen and carbon; and N is a second element, provided that the bonding energy between the first and the second elements is higher than the bonding energy between manganese and the first element. A second material can be expressed by MX, where M is an element selected from the group consisting of titanium, tantalum, vanadium, aluminum, europium, and scandium; and X is an element selected from the group consisting of oxygen, nitrogen and carbon.
    Type: Grant
    Filed: February 14, 2008
    Date of Patent: April 6, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Minoru Amano, Yoshiaki Saito
  • Publication number: 20100078763
    Abstract: A resistance-change memory includes an interlayer insulating film, a lower electrode layer, a fixed layer, a first insulating film, a recording layer, a second insulating film, a conducting layer and an interconnect. The interlayer insulating film is formed on a semiconductor substrate and has a step. The lower electrode layer is formed on the interlayer insulating film including the step. The fixed layer is formed on the lower electrode layer and has invariable magnetization. The first insulating film is formed on the fixed layer. The recording layer is formed on part of the first insulating film and has variable magnetization. The second insulating film is over the recording layer and in contact with the first insulating film. The conducting layer is formed on the second insulating film. The interconnect is connected to the conducting layer.
    Type: Application
    Filed: September 14, 2009
    Publication date: April 1, 2010
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Keiji HOSOTANI, Yoshiaki ASAO, Kuniaki SUGIURA, Masatoshi YOSHIKAWA, Sumio IKEGAWA, Shigeki TAKAHASHI, Minoru AMANO
  • Publication number: 20090224342
    Abstract: A magnetoresistive effect element includes a reference layer, a recording layer, and a nonmagnetic layer. The reference layer is made of a magnetic material, has an invariable magnetization which is perpendicular to a film surface. The recording layer is made of a magnetic material, has a variable magnetization which is perpendicular to the film surface. The nonmagnetic layer is arranged between the reference layer and the recording layer. A critical diameter which is determined by magnetic anisotropy, saturation magnetization, and switched connection of the recording layer and has a single-domain state as a unique stable state or a critical diameter which has a single-domain state as a unique stable state and is inverted while keeping the single-domain state in an inverting process is larger than an element diameter of the magnetoresistive effect element.
    Type: Application
    Filed: October 9, 2008
    Publication date: September 10, 2009
    Inventors: Masahiko NAKAYAMA, Kay Yakushiji, Sumio Ikegawa, Shinji Yuasa, Tadashi Kai, Toshihiko Nagase, Minoru Amano, Hisanori Aikawa, Tatsuya Kishi, Hiroaki Yoda