Patents by Inventor Minoru Senda

Minoru Senda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8593859
    Abstract: When an operational mode is shifted to a standby mode, a first transistor is brought into a conduction state by a control signal, and a word line is thereby clamped to a ground voltage. Further, a second transistor is brought into a non-conduction state, and supply of an internal power supply voltage to a word line driver is shut off. Subsequently, the supply of the internal power supply voltage is halted for saving electrical power. When the operational mode returns to a normal mode, the supply of the internal power supply voltage is started, and subsequently, the first transistor is brought into the non-conduction state by the control signal, and the second transistor is thereby brought into the conduction state.
    Type: Grant
    Filed: January 18, 2011
    Date of Patent: November 26, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Takeshi Agari, Hirotoshi Sato, Kiyoyasu Akai, Minoru Senda, Hiroaki Nakai
  • Publication number: 20110116321
    Abstract: When an operational mode is shifted to a standby mode, a first transistor is brought into a conduction state by a control signal, and a word line is thereby clamped to a ground voltage. Further, a second transistor is brought into a non-conduction state, and supply of an internal power supply voltage to a word line driver is shut off. Subsequently, the supply of the internal power supply voltage is halted for saving electrical power. When the operational mode returns to a normal mode, the supply of the internal power supply voltage is started, and subsequently, the first transistor is brought into the non-conduction state by the control signal, and the second transistor is thereby brought into the conduction state.
    Type: Application
    Filed: January 18, 2011
    Publication date: May 19, 2011
    Applicant: RENESAS ELECTRONICS CORPORATION
    Inventors: Takeshi AGARI, Hirotoshi Sato, Kiyoyasu Akai, Minoru Senda, Hiroaki Nakai
  • Patent number: 7894292
    Abstract: When an operational mode is shifted to a standby mode, a first transistor is brought into a conduction state by a control signal, and a word line is thereby clamped to a ground voltage. Further, a second transistor is brought into a non-conduction state, and supply of an internal power supply voltage to a word line driver is shut off. Subsequently, the supply of the internal power supply voltage is halted for saving electrical power. When the operational mode returns to a normal mode, the supply of the internal power supply voltage is started, and subsequently, the first transistor is brought into the non-conduction state by the control signal, and the second transistor is thereby brought into the conduction state.
    Type: Grant
    Filed: January 27, 2009
    Date of Patent: February 22, 2011
    Assignee: Renesas Electronics Corporation
    Inventors: Takeshi Agari, Hirotoshi Sato, Kiyoyasu Akai, Minoru Senda, Hiroaki Nakai
  • Patent number: 7630239
    Abstract: The present invention provides a semiconductor device which comprises a plurality of memory cells which stores data therein based on threshold voltages thereof, a plurality of bit lines on which read signals based on the stored data of the memory cells appear respectively, a plurality of sense amplifiers which are respectively disposed corresponding to the bit lines and which respectively detect the read signals having appeared on the bit lines and output first and second signals respectively having logical levels different from one another from first and second nodes, based on the detected read signals, and a determination unit which determines, based on the first and second signals received from the first and second nodes of the sense amplifiers, whether the threshold voltages of the memory cells are normal.
    Type: Grant
    Filed: September 11, 2007
    Date of Patent: December 8, 2009
    Assignee: Renesas Technology Corp.
    Inventors: Minoru Senda, Jun Setogawa
  • Publication number: 20090196115
    Abstract: When an operational mode is shifted to a standby mode, a first transistor is brought into a conduction state by a control signal, and a word line is thereby clamped to a ground voltage. Further, a second transistor is brought into a non-conduction state, and supply of an internal power supply voltage to a word line driver is shut off. Subsequently, the supply of the internal power supply voltage is halted for saving electrical power. When the operational mode returns to a normal mode, the supply of the internal power supply voltage is started, and subsequently, the first transistor is brought into the non-conduction state by the control signal, and the second transistor is thereby brought into the conduction state.
    Type: Application
    Filed: January 27, 2009
    Publication date: August 6, 2009
    Inventors: Takeshi Agari, Hirotoshi Sato, Kiyoyasu Akai, Minoru Senda, Hiroaki Nakai
  • Publication number: 20080175066
    Abstract: The present invention provides a semiconductor device which comprises a plurality of memory cells which stores data therein based on threshold voltages thereof, a plurality of bit lines on which read signals based on the stored data of the memory cells appear respectively, a plurality of sense amplifiers which are respectively disposed corresponding to the bit lines and which respectively detect the read signals having appeared on the bit lines and output first and second signals respectively having logical levels different from one another from first and second nodes, based on the detected read signals, and a determination unit which determines, based on the first and second signals received from the first and second nodes of the sense amplifiers, whether the threshold voltages of the memory cells are normal.
    Type: Application
    Filed: September 11, 2007
    Publication date: July 24, 2008
    Inventors: Minoru Senda, Jun Setogawa
  • Patent number: 7365578
    Abstract: In the present semiconductor device a positive, driving pump circuit is driven by an external power supply potential EXVDD (for example of 1.8V) to generate a positive voltage VPC (for example of 2.4V). A negative pump circuit for internal operation is driven by the positive voltage VPC to generate a negative voltage VNA (for example of ?9.2V) required in an erasure or similar internal operation for a word line. The negative pump circuit for internal operation can have a smaller number of stages of pump and hence consume a smaller area than when the circuit is driven by the external power supply voltage EXVDD (for example of 1.8V) as conventional.
    Type: Grant
    Filed: July 3, 2007
    Date of Patent: April 29, 2008
    Assignee: Renesas Technology Corp.
    Inventors: Minoru Senda, Kiyohiro Furutani, Taku Ogura, Shigehiro Kuge, Satoshi Kawasaki, Tadaaki Yamauchi
  • Publication number: 20070285146
    Abstract: In the present semiconductor device a positive, driving pump circuit is driven by an external power supply potential EXVDD (for example of 1.8V) to generate a positive voltage VPC (for example of 2.4V). A negative pump circuit for internal operation is driven by the positive voltage VPC to generate a negative voltage VNA (for example of ?9.2V) required in an erasure or similar internal operation for a word line. The negative pump circuit for internal operation can have a smaller number of stages of pump and hence consume a smaller area than when the circuit is driven by the external power supply voltage EXVDD (for example of 1.8V) as conventional.
    Type: Application
    Filed: July 3, 2007
    Publication date: December 13, 2007
    Applicant: RENESAS TECHNOLOGY CORP.
    Inventors: Minoru Senda, Kiyohiro Furutani, Taku Ogura, Shigehiro Kuge, Satoshi Kawasaki, Tadaaki Yamauchi
  • Patent number: 7268612
    Abstract: In the present semiconductor device a positive, driving pump circuit is driven by an external power supply potential EXVDD (for example of 1.8V) to generate a positive voltage VPC (for example of 2.4V). A negative pump circuit for internal operation is driven by the positive voltage VPC to generate a negative voltage VNA (for example of ?9.2V) required in an erasure or similar internal operation for a word line. The negative pump circuit for internal operation can have a smaller number of stages of pump and hence consume a smaller area than when the circuit is driven by the external power supply voltage EXVDD (for example of 1.8V) as conventional.
    Type: Grant
    Filed: January 30, 2007
    Date of Patent: September 11, 2007
    Assignee: Renesas Technology Corp.
    Inventors: Minoru Senda, Kiyohiro Furutani, Taku Ogura, Shigehiro Kuge, Satoshi Kawasaki, Tadaaki Yamauchi
  • Publication number: 20070120592
    Abstract: In the present semiconductor device a positive, driving pump circuit is driven by an external power supply potential EXVDD (for example of 1.8V) to generate a positive voltage VPC (for example of 2.4V). A negative pump circuit for internal operation is driven by the positive voltage VPC to generate a negative voltage VNA (for example of ?9.2V) required in an erasure or similar internal operation for a word line. The negative pump circuit for internal operation can have a smaller number of stages of pump and hence consume a smaller area than when the circuit is driven by the external power supply voltage EXVDD (for example of 1.8V) as conventional.
    Type: Application
    Filed: January 30, 2007
    Publication date: May 31, 2007
    Applicant: Renesas Technology Corp.
    Inventors: Minoru Senda, Kiyohiro Furutani, Taku Ogura, Shigehiro Kuge, Satoshi Kawasaki, Tadaaki Yamauchi
  • Patent number: 7180362
    Abstract: In the present semiconductor device a positive, driving pump circuit is driven by an external power supply potential EXVDD (for example of 1.8V) to generate a positive voltage VPC (for example of 2.4V). A negative pump circuit for internal operation is driven by the positive voltage VPC to generate a negative voltage VNA (for example of ?9.2V) required in an erasure or similar internal operation for a word line. The negative pump circuit for internal operation can have a smaller number of stages of pump and hence consume a smaller area than when the circuit is driven by the external power supply voltage EXVDD (for example of 1.8V) as conventional.
    Type: Grant
    Filed: September 15, 2004
    Date of Patent: February 20, 2007
    Assignee: Renesas Technology Corp.
    Inventors: Minoru Senda, Kiyohiro Furutani, Taku Ogura, Shigehiro Kuge, Satoshi Kawasaki, Tadaaki Yamauchi
  • Patent number: 6927620
    Abstract: A semiconductor device includes a boosting circuit for supplying a power supply voltage during a standby state of the semiconductor device. The boosting circuit includes a charge pump circuit and first and second detection circuits for detecting an output voltage of the charge pump circuit. The second detection circuit is operated by a DC current greater than that of the first detection circuit, and is activated by an output (Vdet1) from the first detection circuit. The charge pump circuit is activated based on at least an output (Vdet2) from the second detection circuit.
    Type: Grant
    Filed: November 7, 2003
    Date of Patent: August 9, 2005
    Assignee: Renesas Technology Corp.
    Inventor: Minoru Senda
  • Publication number: 20050057288
    Abstract: In the present semiconductor device a positive, driving pump circuit is driven by an external power supply potential EXVDD (for example of 1.8V) to generate a positive voltage VPC (for example of 2.4V). A negative pump circuit for internal operation is driven by the positive voltage VPC to generate a negative voltage VNA (for example of ?9.2V) required in an erasure or similar internal operation for a word line. The negative pump circuit for internal operation can have a smaller number of stages of pump and hence consume a smaller area than when the circuit is driven by the external power supply voltage EXVDD (for example of 1.8V) as conventional.
    Type: Application
    Filed: September 15, 2004
    Publication date: March 17, 2005
    Inventors: Minoru Senda, Kiyohiro Furutani, Taku Ogura, Shigehiro Kuge, Satoshi Kawasaki, Tadaaki Yamauchi
  • Publication number: 20040150463
    Abstract: A semiconductor device includes a boosting circuit for supplying a power supply voltage during a standby state of the semiconductor device. The boosting circuit includes a charge pump circuit and first and second detection circuits for detecting an output voltage of the charge pump circuit. The second detection circuit is operated by a DC current greater than that of the first detection circuit, and is activated by an output (Vdet1) from the first detection circuit. The charge pump circuit is activated based on at least an output (Vdet2) from the second detection circuit.
    Type: Application
    Filed: November 7, 2003
    Publication date: August 5, 2004
    Applicant: RENESAS TECHNOLOGY CORP.
    Inventor: Minoru Senda
  • Patent number: 6737906
    Abstract: In operation, a charge pumping circuit supplies negative charges to an internal voltage line so as to reduce a negative internal voltage. A voltage dividing circuit produces a control voltage according to the difference between a first positive voltage externally applied to a first input terminal in the test mode and the internal voltage. A comparison circuit operates the charge pumping circuit according to the comparison result between a second positive voltage externally applied to a second input terminal in the test mode and the control voltage. The second positive voltage is set according to a target value of the negative internal voltage.
    Type: Grant
    Filed: November 13, 2001
    Date of Patent: May 18, 2004
    Assignee: Renesas Technology Corp.
    Inventors: Minoru Senda, Masaki Tsukude
  • Patent number: 6628559
    Abstract: The semiconductor memory device of the invention has a refresh timer for generating a refresh clock, a refresh executing circuit for sequentially refreshing a plurality of memory cells part by part on the basis of the cycle of the refresh clock, and a refreshing control circuit disposed between the refresh timer and the refresh executing circuit, for stopping transmission of the refresh clock from the refresh timer to the refresh executing circuit in a predetermined period during which the cycle of the refresh clock is easy to become unstable. With the configuration, an erroneous operation of the refresh executing circuit can be prevented.
    Type: Grant
    Filed: October 9, 2001
    Date of Patent: September 30, 2003
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Tadayuki Shimizu, Masaki Tsukude, Minoru Senda
  • Patent number: 6584013
    Abstract: A dynamic-type memory A, a non-volatile memory B and a static-type memory C are enclosed in one package. Separated from a first terminal supplying a power-supply potential to the memories A and B, a second terminal supplying a power-supply potential to the memory C is provided. By stopping the supply of the power-supply potential to the first terminal at stand-by, stand-by current of a semiconductor memory device can be reduced. Therefore, the semiconductor memory device having an increased memory capacity while reducing a mounting area and consumption current at stand-by can be provided.
    Type: Grant
    Filed: October 22, 2001
    Date of Patent: June 24, 2003
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Minoru Senda, Shinichi Kobayashi, Masaki Tsukude, Hirotoshi Sato, Tadayuki Shimizu
  • Patent number: 6535441
    Abstract: A voltage supply circuit has a resistive element, a p-channel MOS transistor, and n-channel MOS transistors. The resistive element and the p-channel MOS transistor are connected in parallel between a power source node and a node. The n-channel MOS transistors are connected in series between the node and the ground node. The voltage supply circuit supplies a threshold voltage of the n-channel MOS transistor to the node connected to a cell Vcc line of a memory cell in response to a test mode signal TE of the H level, and supplies an external source voltage in response to a test mode signal of the L level. In such a manner, a memory cell having an abnormal current in a standby mode can be detected by an operation test.
    Type: Grant
    Filed: July 26, 2001
    Date of Patent: March 18, 2003
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Minoru Senda, Shigeki Ohbayashi
  • Publication number: 20020175744
    Abstract: In operation, a charge pumping circuit supplies negative charges to an internal voltage line so as to reduce a negative internal voltage. A voltage dividing circuit produces a control voltage according to the difference between a first positive voltage externally applied to a first input terminal in the test mode and the internal voltage. A comparison circuit operates the charge pumping circuit according to the comparison result between a second positive voltage externally applied to a second input terminal in the test mode and the control voltage. The second positive voltage is set according to a target value of the negative internal voltage.
    Type: Application
    Filed: November 13, 2001
    Publication date: November 28, 2002
    Applicant: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Minoru Senda, Masaki Tsukude
  • Publication number: 20020159289
    Abstract: A dynamic-type memory A, a non-volatile memory B and a static-type memory C are enclosed in one package. Separated from a first terminal supplying a power-supply potential to the memories A and B, a second terminal supplying a power-supply potential to the memory C is provided. By stopping the supply of the power-supply potential to the first terminal at stand-by, stand-by current of a semiconductor memory device can be reduced. Therefore, the semiconductor memory device having an increased memory capacity while reducing a mounting area and consumption current at stand-by can be provided.
    Type: Application
    Filed: October 22, 2001
    Publication date: October 31, 2002
    Applicant: MITSUBISHI DENKI KABUSHIKI KAISHA
    Inventors: Minoru Senda, Shinichi Kobayashi, Masaki Tsukude, Hirotoshi Sato, Tadayuki Shimizu