Patents by Inventor Minoru Suwa

Minoru Suwa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9945015
    Abstract: A high-tensile steel plate has a chemical composition containing, by mass, specific amounts of C, Mn, Si, P, S, Al, Ni, B, N, one or more elements selected from Cr, Mo, V, Cu, Ti, and Ca as needed, Ceq?0.80, and a center-segregation zone hardness index HCS satisfying 5.5[C]4/3+15[P]+0.90[Mn]+0.12[Ni]+0.53[Mo]?2.5. The hardness of a center-segregation zone satisfies HVmax/HVave?1.35+0.006/C?t/750. A steel having the above-described chemical composition is subjected to hot rolling at a specific slab-heating temperature at a specific rolling reduction ratio, subsequently reheated, cooled at a cooling rate of 0.3° C./s or more until the temperature of a central portion in a plate-thickness direction reaches 350° C. or less, and tempered to a specific temperature range.
    Type: Grant
    Filed: October 1, 2012
    Date of Patent: April 17, 2018
    Assignee: JFE Steel Corporation
    Inventors: Masao Yuga, Shigeki Kitsuya, Kenji Hayashi, Minoru Suwa
  • Patent number: 9790579
    Abstract: The present invention provides a high tensile strength steel plate having a chemical composition containing, in percent by mass, 0.03% to 0.12% of C, 0.01% to 0.30% of Si, 0.5% to 1.95% of Mn, 0.008% or less of P, 0.005% or less of S, 0.015% to 0.06% of Al, 0.011% to 0.05% of Nb, 0.005% to 0.02% of Ti, 0.001% to 0.006% of N, 0.0005% to 0.003% of Ca, optionally, one or two or more of Cr, Mo, V, Cu, and Ni, in which Ceq is 0.44 or less, Ti/N is 1.5 to 3.5, and parameter formulas composed of specific elements for controlling the sulfide morphology and the degree of center segregation in the steel are satisfied, and the balance being Fe and incidental impurities, in which the hardness of the center segregation area of the steel sheet is further specified.
    Type: Grant
    Filed: March 1, 2012
    Date of Patent: October 17, 2017
    Assignee: JFE Steel Corporation
    Inventors: Masao Yuga, Shigeki Kitsuya, Yusuke Terazawa, Minoru Suwa, Kenji Hayashi
  • Publication number: 20150075682
    Abstract: The present invention provides a high tensile strength steel plate having a chemical composition containing, in percent by mass, 0.03% to 0.12% of C, 0.01% to 0.30% of Si, 0.5% to 1.95% of Mn, 0.008% or less of P, 0.005% or less of S, 0.015% to 0.06% of Al, 0.011% to 0.05% of Nb, 0.005% to 0.02% of Ti, 0.001% to 0.006% of N, 0.0005% to 0.003% of Ca, optionally, one or two or more of Cr, Mo, V, Cu, and Ni, in which Ceq is 0.44 or less, Ti/N is 1.5 to 3.5, and parameter formulas composed of specific elements for controlling the sulfide morphology and the degree of center segregation in the steel are satisfied, and the balance being Fe and incidental impurities, in which the hardness of the center segregation area of the steel sheet is further specified.
    Type: Application
    Filed: March 1, 2012
    Publication date: March 19, 2015
    Applicant: JFE Steel Corporation
    Inventors: Masao Yuga, Shigeki Kitsuya, Yusuke Terazawa, Minoru Suwa, Kenji Hayashi
  • Publication number: 20140246131
    Abstract: A high-tensile steel plate has a chemical composition containing, by mass, specific amounts of C, Mn, Si, P, S, Al, Ni, B, N, one or more elements selected from Cr, Mo, V, Cu, Ti, and Ca as needed, Ceq?0.80, and a center-segregation zone hardness index HCS satisfying 5.5[C]4/3+15[P]+0.90[Mn]+0.12[Ni]+0.53[Mo]?2.5. The hardness of a center-segregation zone satisfies HVmax/HVave?1.35+0.006/C?t/750. A steel having the above-described chemical composition is subjected to hot rolling at a specific slab-heating temperature at a specific rolling reduction ratio, subsequently reheated, cooled at a cooling rate of 0.3° C./s or more until the temperature of a central portion in a plate-thickness direction reaches 350° C. or less, and tempered to a specific temperature range.
    Type: Application
    Filed: October 1, 2012
    Publication date: September 4, 2014
    Applicant: JFE STEEL CORPORATION
    Inventors: Masao Yuga, Shigeki Kitsuya, Kenji Hayashi, Minoru Suwa
  • Patent number: 8147626
    Abstract: A high strength steel plate containing 0.02 to 0.08% C, by mass, and has substantially a two phase microstructure of ferrite and bainite. The ferrite contains precipitates having a particle size of 30 nm or smaller grain size. The steel plate has a yield strength of 448 MPa or higher. A method for manufacturing the high strength steel plate which comprises hot rolling, accelerated cooling and reheating. The accelerated cooling is conducted down to a temperature of 300 to 600° C. at a cooling rate of 5° C./s or higher. The reheating is conducted up to a temperature of 550 to 700° C. at a heating rate of 0.5° C./s or higher.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: April 3, 2012
    Assignee: JFE Steel Corporation
    Inventors: Nobuyuki Ishikawa, Toyohisa Shinmiya, Minoru Suwa, Shigeru Endo
  • Publication number: 20110253267
    Abstract: A high-strength steel pipe having a strength of API X65 grade or higher consisting essentially of, by mass %, 0.02 to 0.08% of C, 0.01 to 0.5% of Si, 0.5 to 1.8% of Mn, 0.01% or less of P, 0.002% or less of S, 0.01 to 0.7% of Al, 0.005 to 0.04% of Ti, 0.05 to 0.50% Mo, at least one element selected from 0.005 to 0.05% of Nb and 0.005 to 0.10% of V, and the balance being Fe, in which the volume percentage of the ferritic phase is 90% or higher, and complex carbides containing Ti, Mo, and at least one element selected from the group consisting of Nb and V are precipitated in the ferritic phase. The high-strength steel pipe has excellent HIC resistance and good toughness of a heat-affected zone, and can be manufactured stably at a low cost.
    Type: Application
    Filed: May 9, 2011
    Publication date: October 20, 2011
    Applicant: JFE Steel Corporation
    Inventors: Nobuyuki Ishikawa, Toyohisa Shinmiya, Shigeru Endo, Minoru Suwa
  • Publication number: 20110168304
    Abstract: A high strength steel plate containing 0.02 to 0.08% C, by mass, and has substantially a two phase microstructure of ferrite and bainite. The ferrite contains precipitates having a particle size of 30 nm or smaller grain size. The steel plate has a yield strength of 448 MPa or higher. A method for manufacturing the high strength steel plate which comprises hot rolling, accelerated cooling and reheating. The accelerated cooling is conducted down to a temperature of 300 to 600° C. at a cooling rate of 5° C./s or higher. The reheating is conducted up to a temperature of 550 to 700° C. at a heating rate of 0.5° C./s or higher.
    Type: Application
    Filed: March 22, 2011
    Publication date: July 14, 2011
    Applicant: JFE STEEL CORPORATION
    Inventors: Nobuyuki ISHIKAWA, Toyohisa SHINMIYA, Minoru SUWA, Shigeru ENDO
  • Patent number: 7959745
    Abstract: A high-strength steel pipe having a strength of API X65 grade or higher consisting essentially of, by mass %, 0.02 to 0.08% of C, 0.01 to 0.5% of Si, 0.5 to 1.8% of Mn, 0.01% or less of P, 0.002% or less of S, 0.01 to 0.7% of Al, 0.005 to 0.04% of Ti, 0.05 to 0.50% Mo, at least one element selected from 0.005 to 0.05% of Nb and 0.005 to 0.10% of V, and the balance being Fe, in which the volume percentage of the ferritic phase is 90% or higher, and complex carbides containing Ti, Mo, and at least one element selected from the group consisting of Nb and V are precipitated in the ferritic phase. The high-strength steel pipe has excellent HIC resistance and good toughness of a heat-affected zone, and can be manufactured stably at a low cost.
    Type: Grant
    Filed: May 15, 2006
    Date of Patent: June 14, 2011
    Assignee: JFE Steel Corporation
    Inventors: Nobuyuki Ishikawa, Toyohisa Shinmiya, Shigeru Endo, Minoru Suwa
  • Patent number: 7935197
    Abstract: A high strength steel plate containing 0.02 to 0.08% C, by mass, and has substantially a two phase microstructure of ferrite and bainite. The ferrite contains precipitates having a particle size of 30 nm or smaller grain size. The steel plate has a yield strength of 448 MPa or higher. A method for manufacturing the high strength steel plate which comprises hot rolling, accelerated cooling and reheating. The accelerated cooling is conducted down to a temperature of 300 to 600° C. at a cooling rate of 5° C./s or higher. The reheating is conducted up to a temperature of 550 to 700° C. at a heating rate of 0.5° C./s or higher.
    Type: Grant
    Filed: September 19, 2006
    Date of Patent: May 3, 2011
    Assignee: JFE Steel Corporation
    Inventors: Nobuyuki Ishikawa, Toyohisa Shinmiya, Minoru Suwa, Shigeru Endo
  • Publication number: 20070012386
    Abstract: A high strength steel plate containing 0.02 to 0.08% C, by mass, and has substantially a two phase microstructure of ferrite and bainite. The ferrite contains precipitates having a particle size of 30 nm or smaller grain size. The steel plate has a yield strength of 448 MPa or higher. A method for manufacturing the high strength steel plate which comprises hot rolling, accelerated cooling and reheating. The accelerated cooling is conducted down to a temperature of 300 to 600° C. at a cooling rate of 5° C./s or higher. The reheating is conducted up to a temperature of 550 to 700° C. at a heating rate of 0.5° C./s or higher.
    Type: Application
    Filed: September 19, 2006
    Publication date: January 18, 2007
    Applicant: JFE STEEL CORPORATION
    Inventors: Nobuyuki Ishikawa, Toyohisa Shinmiya, Minoru Suwa, Shigeru Endo
  • Publication number: 20060201592
    Abstract: A high-strength steel pipe having a strength of API X65 grade or higher consisting essentially of, by mass %, 0.02 to 0.08% of C, 0.01 to 0.5% of Si, 0.5 to 1.8% of Mn, 0.01% or less of P, 0.002% or less of S, 0.01 to 0.7% of Al, 0.005 to 0.04% of Ti, 0.05 to 0.50% Mo, at least one element selected from 0.005 to 0.05% of Nb and 0.005 to 0.10% of V, and the balance being Fe, in which the volume percentage of the ferritic phase is 90% or higher, and complex carbides containing Ti, Mo, and at least one element selected from the group consisting of Nb and V are precipitated in the ferritic phase. The high-strength steel pipe has excellent HIC resistance and good toughness of a heat-affected zone, and can be manufactured stably at a low cost.
    Type: Application
    Filed: May 15, 2006
    Publication date: September 14, 2006
    Applicant: JFE STEEL CORPORATION
    Inventors: Nobuyuki Ishikawa, Toyohisa Shinmiya, Shigeru Endo, Minoru Suwa
  • Publication number: 20050106411
    Abstract: The high strength steel plate according to the present invention contains 0.02 to 0.08% C, by mass, and has substantially a two phase microstructure of ferrite and bainite. The ferrite contains precipitates having particle size of 30 nm or smaller grain size. The steel plate has yield strength of 448 MPa or higher. The method for manufacturing the high strength steel plate comprises the steps of hot rolling, accelerated cooling, and reheating. The accelerated cooling is conducted down to the temperature of 300 to 600° C. at a cooling rate of 5° C./s or higher. The reheating is conducted up to temperature of 550 to 700° C. at a heating rate of 0.5° C./s or higher.
    Type: Application
    Filed: February 4, 2003
    Publication date: May 19, 2005
    Applicant: JFE STEEL CORPORATION
    Inventors: Nobuyuki Ishikawa, Toyohisa Shinmiya, Minoru Suwa, Shigeru Endo
  • Publication number: 20040074573
    Abstract: The present invention relates to a high strength hot rolled steel sheet containing 0.15% or less C, 0.02 to 0.35% Ti, and 0.05 to 0.7% Mo by weight percentage and consisting essentially of a matrix of ferrite structure single phase and fine precipitates with a grain size of smaller than 10 nm dispersed in the matrix, for example, a high strength hot rolled steel sheet which consists essentially of 0.06% or less C, 0.5% or less Si, 0.5 to 2.0% Mn, 0.06% or less P, 0.005% or less S, 0.1% or less Al, 0.006% or less N, 0.02 to 0.10% Ti, 0.05 to 0.6% Mo by weight percentage, and the balance being Fe, wherein fine precipitates with a grain size of smaller than 10 nm are dispersed in a matrix of ferrite structure single phase at a number per unit volume of 5×104/&mgr;m3 or higher. This steel sheet, which has tensile strength of not lower than 550 MPa, high elongation and excellent stretch flangeability, is suitable for intricately shaped automotive chassis parts such as a suspension arm.
    Type: Application
    Filed: October 14, 2003
    Publication date: April 22, 2004
    Applicant: NKK CORPORATION
    Inventors: Yoshimasa Funakawa, Tsuyoshi Shiozaki, Kunikazu Tomita, Takanobu Saito, Hiroshi Nakata, Kaoru Sato, Minoru Suwa, Tetsuo Yamamoto, Yasuhiro Murao, Eiji Maeda
  • Patent number: 6666932
    Abstract: The present invention relates to a high strength hot rolled steel sheet containing 0.15% or less C, 0.02 to 0.35% Ti, and 0.05 to 0.7% Mo by weight percentage and consisting essentially of a matrix of ferrite structure single phase and fine precipitates with a grain size of smaller than 10 nm dispersed in the matrix, for example, a high strength hot rolled steel sheet which consists essentially of 0.06% or less C, 0.5% or less Si, 0.5 to 2.0% Mn, 0.06% or less P, 0.005% or less S, 0.1% or less Al, 0.006% or less N, 0.02 to 0.10% Ti, 0.05 to 0.6% Mo by weight percentage, and the balance being Fe, wherein fine precipitates with a grain size of smaller than 10 nm are dispersed in a matrix of ferrite structure single phase at a number per unit volume of 5×104/&mgr;m3 or higher. This steel sheet, which has tensile strength of not lower than 550 MPa, high elongation and excellent stretch flangeability, is suitable for intricately shaped automotive chassis parts such as a suspension arm.
    Type: Grant
    Filed: March 28, 2002
    Date of Patent: December 23, 2003
    Assignee: NKK Corporation
    Inventors: Yoshimasa Funakawa, Tsuyoshi Shiozaki, Kunikazu Tomita, Takanobu Saito, Hiroshi Nakata, Kaoru Sato, Minoru Suwa, Tetsuo Yamamoto, Yasuhiro Murao, Eiji Maeda
  • Publication number: 20030180174
    Abstract: The present invention provides a high-strength steel pipe of API X65 grade or higher consisting essentially of, by mass %, 0.02 to 0.08% of C, 0.01 to 0.5% of Si, 0.5 to 1.8% of Mn, 0.01% or less of P, 0.002% or less of S, 0.01 to 0.07% of Al, 0.005 to 0.04% of Ti, 0.05 to 0.50% Mo, at least one element selected from 0.005 to 0.05% of Nb and 0.005 to 0.10% of V, and the balance being Fe, in which the volume percentage of ferritic phase is 90% or higher, and complex carbides containing Ti, Mo, and at least one element selected from Nb and V are precipitated in the ferritic phase. The high-strength steel pipe in accordance with the present invention has excellent HIC resistance and good toughness of heat-affected zone, and can be manufactured stably at a low cost.
    Type: Application
    Filed: March 10, 2003
    Publication date: September 25, 2003
    Applicant: JFE STEEL CORPORATION
    Inventors: Nobuyuki Ishikawa, Toyohisa Shinmiya, Shigeru Endo, Minoru Suwa
  • Publication number: 20030063996
    Abstract: The present invention relates to a high strength hot rolled steel sheet containing 0.15% or less C, 0.02 to 0.35% Ti, and 0.05 to 0.7% Mo by weight percentage and consisting essentially of a matrix of ferrite structure single phase and fine precipitates with a grain size of smaller than 10 nm dispersed in the matrix, for example, a high strength hot rolled steel sheet which consists essentially of 0.06% or less C, 0.5% or less Si, 0.5 to 2.0% Mn, 0.06% or less P, 0.005% or less S, 0.1% or less Al, 0.006% or less N, 0.02 to 0.10% Ti, 0.05 to 0.6% Mo by weight percentage, and the balance being Fe, wherein fine precipitates with a grain size of smaller than 10 nm are dispersed in a matrix of ferrite structure single phase at a number per unit volume of 5×104/&mgr;m3 or higher. This steel sheet, which has tensile strength of not lower than 550 MPa, high elongation and excellent stretch flangeability, is suitable for intricately shaped automotive chassis parts such as a suspension arm.
    Type: Application
    Filed: March 28, 2002
    Publication date: April 3, 2003
    Applicant: NKK CORPORATION
    Inventors: Yoshimasa Funakawa, Tsuyoshi Shiozaki, Kunikazu Tomita, Takanobu Saito, Hiroshi Nakata, Kaoru Sato, Minoru Suwa, Tetsuo Yawamoto, Yasuhiro Murao, Eiji Maeda