Patents by Inventor Minoru TAKASATO

Minoru TAKASATO has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230303981
    Abstract: An object of the present invention is to provide a ventral hindgut organoid for producing a bladder organoid that comprises a layer structure of bladder epithelial cell types like the urinary bladder. An aspect of the present invention is to provide a method for producing a ventral hindgut organoid, comprising culturing a pluripotent stem cell with an inducer medium A containing activin A and GSK3? inhibitor to induce differentiation into definitive endoderm cells and culturing the definitive endoderm cells with an inducer medium B containing fibroblast growth factor, GSK3? inhibitor, and optionally further containing bone morphogenetic protein, and then culturing them in the presence of extracellular matrix with an inducer medium B containing fibroblast growth factor, GSK3? inhibitor, and optionally further containing bone morphogenetic protein to form a ventral hindgut organoid.
    Type: Application
    Filed: July 30, 2021
    Publication date: September 28, 2023
    Applicants: RIKEN, OTSUKA PHARMACEUTICAL CO., LTD.
    Inventors: Minoru TAKASATO, Kazuhiro OFUJI, Filip Jos WYMEERSCH
  • Publication number: 20210371826
    Abstract: A method is provided for simultaneously producing both nephron progenitor cells and ureteric epithelial progenitor cells including the step of contacting intermediate mesoderm cells with: fibroblast growth factor 9 and/or fibroblast growth factor 20 and optionally, one or more selected from the group consisting of: bone morphogenic protein 7; heparin; a Wnt agonist; retinoic acid; and an RA antagonist. The concentrations of Wnt agonist, retinoic acid and/or RA antagonist may be manipulated to favour the relative production of nephron progenitor cells and ureteric epithelial progenitor cells. The intermediate mesoderm cells are ultimately derived from human pluripotent stem cells via a posterior primitive streak stage. The nephron progenitor cells and ureteric epithelial progenitor cells may have end uses such as for kidney repair and regeneration, bioprinting of kidneys and screening compounds for nephrotoxicity.
    Type: Application
    Filed: January 22, 2021
    Publication date: December 2, 2021
    Inventors: Melissa LITTLE, Minoru TAKASATO
  • Patent number: 10900022
    Abstract: A method is provided for simultaneously producing both nephron progenitor cells and ureteric epithelial progenitor cells including the step of contacting intermediate mesoderm cells with: fibroblast growth factor (9) and/or fibroblast growth factor (20) and optionally, one or more selected from the group consisting of. bone morphogenic protein 7; heparin: a Wnt agonist; retinoic acid; and an RA antagonist. The concentrations of Writ agonist, retinoic acid and/or RA antagonist may be manipulated to favour the relative production of nephron progenitor cells and ureteric epithelial progenitor cells. The intermediate mesoderm cells are ultimately derived from human pluripotent stem cells via a posterior primitive streak stage. The nephron progenitor cells and ureteric epithelial progenitor cells may have end uses such as for kidney repair and regeneration, bioprinting of kidneys and screening compounds for nephrotoxicity.
    Type: Grant
    Filed: June 13, 2014
    Date of Patent: January 26, 2021
    Assignee: The University of Queensland
    Inventors: Melissa Little, Minoru Takasato
  • Publication number: 20200339957
    Abstract: A method is provided for producing renal organoids comprising nephrons, ureteric bud and vasculature and/or progenitors of these. In one embodiment, the methods includes contacting intermediate mesoderm cells with: fibroblast growth factor 9 and/or fibroblast growth factor 20 and/or fibroblast growth factor 2 and optionally, one or more selected from the group consisting of: bone morphogenic protein 7; heparin; a Wnt agonist; retinoic acid; and an RA antagonist under conditions that promote formation of vascularized renal organoids. Another embodiment includes producing mesoderm cells by sequentially contacting pluripotent stem cells with a Wnt agonist and fibroblast growth factor 9 and/or fibroblast growth factor 20 and/or fibroblast growth factor 2, followed by a relatively short re-exposure to the Wnt agonist.
    Type: Application
    Filed: November 13, 2019
    Publication date: October 29, 2020
    Inventors: Minoru TAKASATO, Melissa LITTLE
  • Publication number: 20190032020
    Abstract: A method is provided for producing renal organoids comprising nephrons, ureteric bud and vasculature and/or progenitors of these. In one embodiment, the methods includes contacting intermediate mesoderm cells with: fibroblast growth factor 9 and/or fibroblast growth factor 20 and/or fibroblast growth factor 2 and optionally, one or more selected from the group consisting of: bone morphogenic protein 7; heparin; a Wnt agonist; retinoic acid; and an RA antagonist under conditions that promote formation of vascularized renal organoids. Another embodiment includes producing mesoderm cells by sequentially contacting pluripotent stem cells with a Wnt agonist and fibroblast growth factor 9 and/or fibroblast growth factor 20 and/or fibroblast growth factor 2, followed by a relatively short re-exposure to the Wnt agonist.
    Type: Application
    Filed: December 15, 2015
    Publication date: January 31, 2019
    Inventors: Minoru TAKASATO, Melissa LITTLE
  • Publication number: 20160237409
    Abstract: A method is provided for simultaneously producing both nephron progenitor cells and ureteric epithelial progenitor cells including the step of contacting intermediate mesoderm cells with: fibroblast growth factor (9) and/or fibroblast growth factor (20) and optionally, one or more selected from the group consisting of. bone morphogenic protein 7; heparin: a Wnt agonist; retinoic acid; and an RA antagonist. The concentrations of Writ agonist, retinoic acid and/or RA antagonist may be manipulated to favour the relative production of nephron progenitor cells and ureteric epithelial progenitor cells. The intermediate mesoderm cells are ultimately derived from human pluripotent stem cells via a posterior primitive streak stage. The nephron progenitor cells and ureteric epithelial progenitor cells may have end uses such as for kidney repair and regeneration, bioprinting of kidneys and screening compounds for nephrotoxicity.
    Type: Application
    Filed: June 13, 2014
    Publication date: August 18, 2016
    Inventors: Melissa LITTLE, Minoru TAKASATO