Patents by Inventor Minxu Zhang

Minxu Zhang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240394190
    Abstract: The present application provides a method of training a deep learning model. A specific implementation solution of the method of training the deep learning model includes: determining, according to first training data for a current training round, a first target parameter required to be written into a target memory in a first network parameter required by an embedding of the first training data, wherein the target memory is a memory contained in a target processor; determining a remaining storage slot in the target memory according to a first mapping relationship between a storage slot of the target memory and a network parameter; and writing, in response to the remaining storage slot meeting a storage requirement of the first target parameter, the first target parameter into the target memory so that a computing core contained in the target processor adjusts the first network parameter according to the first training data.
    Type: Application
    Filed: September 27, 2022
    Publication date: November 28, 2024
    Inventors: Minxu ZHANG, Haifeng WANG, Fan ZHANG, Xinxuan WU, Xuefeng YAO, Danlei FENG, Zhihua WU, Zhipeng TAN, Jie DING, Dianhai YU
  • Publication number: 20230206024
    Abstract: A resource allocation method, including: determining a neural network model to be allocated resources, and determining a set of devices capable of providing resources for the neural network model; determining, based on the set of devices and the neural network model, first set of evaluation points including first number of evaluation points, each of which corresponds to one resource allocation scheme and resource use cost corresponding to the resource allocation scheme; updating and iterating first set of evaluation points to obtain second set of evaluation points including second number of evaluation points, each of which corresponds to one resource allocation scheme and resource use cost corresponding to the resource allocation scheme, and second number being greater than first number; and selecting a resource allocation scheme with minimum resource use cost from the second set of evaluation points as a resource allocation scheme for allocating resources to the neural network model.
    Type: Application
    Filed: August 19, 2022
    Publication date: June 29, 2023
    Inventors: Ji Liu, Zhihua Wu, Danlei Feng, Chendi Zhou, Minxu Zhang, Xinxuan Wu, Xuefeng Yao, Dejing Dou, Dianhai Yu, Yanjun Ma
  • Publication number: 20230206075
    Abstract: A method for distributing network layers in a neural network model includes: acquiring a to-be-processed neural network model and a computing device set; generating a target number of distribution schemes according to network layers in the to-be-processed neural network model and computing devices in the computing device set, the distribution schemes including corresponding relationships between the network layers and the computing devices; according to device types of the computing devices, combining the network layers corresponding to the same device type in each distribution scheme into one stage, to obtain a combination result of each distribution scheme; obtaining an adaptive value of each distribution scheme according to the combination result of each distribution scheme; and determining a target distribution scheme from the distribution schemes according to respective adaptive value, and taking the target distribution scheme as a distribution result of the network layers in the to-be-processed neural n
    Type: Application
    Filed: November 21, 2022
    Publication date: June 29, 2023
    Applicant: BEIJING BAIDU NETCOM SCIENCE TECHNOLOGY CO., LTD.
    Inventors: Ji LIU, Zhihua WU, Danlei FENG, Minxu ZHANG, Xinxuan WU, Xuefeng YAO, Beichen MA, Dejing DOU, Dianhai YU, Yanjun MA