Patents by Inventor Mira S. Misra

Mira S. Misra has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220242343
    Abstract: Aspects of the present disclosure involve projecting an interactive scene onto a surface from a projecting object. In one particular embodiment, the interactive scene is projected from a vehicle and may be utilized by the vehicle to provide a scene or image that a user may interact with through various gestures detected by the system. In addition, the interactive scene may be customized to one or more preferences determined by the system, such as user preferences, system preferences, or preferences obtained through feedback from similar systems. Based on one or more user inputs (such as user gestures received at the system), the projected scene may be altered or new scenes may be projected. In addition, control over some aspects of the vehicle (such as unlocking of doors, starting of the motor, etc.) may be controlled through the interactive scene and the detected gestures of the users.
    Type: Application
    Filed: September 13, 2021
    Publication date: August 4, 2022
    Inventors: Daniel E. Potter, Bivin J. Varghese, Christopher P. Child, Mira S. Misra, Clarisse Mazuir, Malcolm J. Northcott, Albert J. Golko, Daniel J. Reetz, Matthew E. Last, Thaddeus Stefanov-Wagner, Christopher J. Sataline, Michael A. Cretella, Collin J. Palmer
  • Patent number: 11117535
    Abstract: Aspects of the present disclosure involve projecting an interactive scene onto a surface from a projecting object. In one particular embodiment, the interactive scene is projected from a vehicle and may be utilized by the vehicle to provide a scene or image that a user may interact with through various gestures detected by the system. In addition, the interactive scene may be customized to one or more preferences determined by the system, such as user preferences, system preferences, or preferences obtained through feedback from similar systems. Based on one or more user inputs (such as user gestures received at the system), the projected scene may be altered or new scenes may be projected. In addition, control over some aspects of the vehicle (such as unlocking of doors, starting of the motor, etc.) may be controlled through the interactive scene and the detected gestures of the users.
    Type: Grant
    Filed: August 18, 2017
    Date of Patent: September 14, 2021
    Inventors: Daniel E. Potter, Bivin J. Varghese, Christopher P. Child, Mira S. Misra, Clarisse Mazuir, Malcolm J. Northcott, Albert J. Golko, Daniel J. Reetz, Matthew E. Last, Thaddeus Stefanov-Wagner, Christopher J. Sataline, Michael A. Cretella, Collin J. Palmer
  • Patent number: 10773725
    Abstract: A method includes determining temperature values for roadway areas ahead of a vehicle, determining lubricant state values for the roadway areas, and determining lubricant thickness values for the roadway areas. The method also includes determining a tire-road friction estimate for each of the roadway areas using the temperature values, the lubricant state values, and the lubricant thickness values, and defining a friction map that relates the tire-road friction estimates to the roadway areas. The method also includes determining a motion plan based at least in part on the friction map, and controlling the vehicle based on the motion plan.
    Type: Grant
    Filed: August 22, 2018
    Date of Patent: September 15, 2020
    Assignee: Apple Inc.
    Inventors: Filip Ilievski, Matisse J. Milovich, Christopher M. Miller, Budhadipta Dan, Jack E. Graves, Evan C. Cull, Irene Perali, Mira S. Misra, Sheila P. Nabanja, Lucian Ion, James J. Reuther, Christy F. Cull
  • Publication number: 20190164344
    Abstract: Aspects of the present disclosure involve projecting an interactive scene onto a surface from a projecting object. In one particular embodiment, the interactive scene is projected from a vehicle and may be utilized by the vehicle to provide a scene or image that a user may interact with through various gestures detected by the system. In addition, the interactive scene may be customized to one or more preferences determined by the system, such as user preferences, system preferences, or preferences obtained through feedback from similar systems. Based on one or more user inputs (such as user gestures received at the system), the projected scene may be altered or new scenes may be projected. In addition, control over some aspects of the vehicle (such as unlocking of doors, starting of the motor, etc.) may be controlled through the interactive scene and the detected gestures of the users.
    Type: Application
    Filed: August 18, 2017
    Publication date: May 30, 2019
    Inventors: Daniel E. Potter, Bivin J. Varghese, Christopher P. Child, Mira S. Misra, Clarisse Mazuir, Malcolm J. Northcott, Albert J. Golko, Daniel J. Reetz, Matthew E. Last, Thaddeus Stefanov-Wagner, Christopher J. Sataline, Michael A. Cretella, Collin J. Palmer
  • Patent number: 7719018
    Abstract: A light emitting device includes a region of first conductivity type, a region of second conductivity type, an active region, and an electrode. The active region is disposed between the region of first conductivity type and the region of second conductivity type and the region of second conductivity type is disposed between the active region and the electrode. The active region has a total thickness less than or equal to about 0.25?n and has a portion located between about 0.6?n and 0.75?n from the electrode, where ?n is the wavelength of light emitted by the active region in the region of second conductivity type. In some embodiments, the active region includes a plurality of clusters, with a portion of a first cluster located between about 0.6?n and 0.75?n from the electrode and a portion of a second cluster located between about 1.2?n and 1.35?n from the electrode.
    Type: Grant
    Filed: May 27, 2005
    Date of Patent: May 18, 2010
    Assignees: Philips Lumileds Lighting Company, LLC, Koninklijke Philips Electronics N.V.
    Inventors: Mira S. Misra, Yu-Chen Shen, Stephen A. Stockman
  • Patent number: 6900474
    Abstract: A light emitting device includes a region of first conductivity type, a region of second conductivity type, an active region, and an electrode. The active region is disposed between the region of first conductivity type and the region of second conductivity type and the region of second conductivity type is disposed between the active region and the electrode. The active region has a total thickness less than or equal to about 0.25?n and has a portion located between about 0.6?n and 0.75?n from the electrode, where ?n is the wavelength of light emitted by the active region in the region of second conductivity type. In some embodiments, the active region includes a plurality of clusters, with a portion of a first cluster located between about 0.6?n and 0.75?n from the electrode and a portion of a second cluster located between about 1.2?n and 1.35?n from the electrode.
    Type: Grant
    Filed: July 31, 2003
    Date of Patent: May 31, 2005
    Assignee: Lumileds Lighting U.S., LLC
    Inventors: Mira S. Misra, Yu-Chen Shen, Stephen A. Stockman
  • Patent number: 6833564
    Abstract: A III-nitride light emitting device including a substrate, a first conductivity type layer overlying the substrate, a spacer layer overlying the first conductivity type layer, an active region overlying the spacer layer, a cap layer overlying the active region, and a second conductivity type layer overlying the cap layer is disclosed. The active region includes a quantum well layer and a barrier layer containing indium. The barrier layer may be doped with a dopant of first conductivity type and may have an indium composition between 1% and 15%. In some embodiments, the light emitting device includes an InGaN lower confinement layer formed between the first conductivity type layer and the active region. In some embodiments, the light emitting device includes an InGaN upper confinement layer formed between the second conductivity type layer and the active region. In some embodiments, the light emitting device includes an InGaN cap layer formed between the upper confinement layer and the active region.
    Type: Grant
    Filed: November 2, 2001
    Date of Patent: December 21, 2004
    Assignee: Lumileds Lighting U.S., LLC
    Inventors: Yu-Chen Shen, Mira S. Misra
  • Publication number: 20040119077
    Abstract: A light emitting device includes a region of first conductivity type, a region of second conductivity type, an active region, and an electrode. The active region is disposed between the region of first conductivity type and the region of second conductivity type and the region of second conductivity type is disposed between the active region and the electrode. The active region has a total thickness less than or equal to about 0.25&lgr;n and has a portion located between about 0.6&lgr;n and 0.75&lgr;n from the electrode, where &lgr;n is the wavelength of light emitted by the active region in the region of second conductivity type. In some embodiments, the active region includes a plurality of clusters, with a portion of a first cluster located between about 0.6&lgr;n and 0.75&lgr;n from the electrode and a portion of a second cluster located between about 1.2&lgr;n and 1.35&lgr;n from the electrode.
    Type: Application
    Filed: July 31, 2003
    Publication date: June 24, 2004
    Inventors: Mira S. Misra, Yu-Chen Shen, Stephen A. Stockman
  • Publication number: 20030085409
    Abstract: A III-nitride light emitting device including a substrate, a first conductivity type layer overlying the substrate, a spacer layer overlying the first conductivity type layer, an active region overlying the spacer layer, a cap layer overlying the active region, and a second conductivity type layer overlying the cap layer is disclosed. The active region includes a quantum well layer and a barrier layer containing indium. The barrier layer may be doped with a dopant of first conductivity type and may have an indium composition between 1% and 15%. In some embodiments, the light emitting device includes an InGaN lower confinement layer formed between the first conductivity type layer and the active region. In some embodiments, the light emitting device includes an InGaN upper confinement layer formed between the second conductivity type layer and the active region. In some embodiments, the light emitting device includes an InGaN cap layer formed between the upper confinement layer and the active region.
    Type: Application
    Filed: November 2, 2001
    Publication date: May 8, 2003
    Inventors: Yu-Chen Shen, Mira S. Misra
  • Publication number: 20020157596
    Abstract: One embodiment of a process that forms low resistivity III-V nitride (e.g., GaN) p-type layers removes all sources of hydrogen (typically NH3) in the epitaxial growth chamber during the post growth cool-down process. By eliminating sources of hydrogen during the cool-down process, any additional passivation of the acceptor impurities (e.g., Mg) by hydrogen atoms during cool-down is avoided. After the cool-down process, the wafer is annealed at a relatively low temperature (e.g., below 625° C.) to remove nearly all of the hydrogen from the Mg-doped layers. The anneal can take place at a low temperature since the diffusivity of H in the p-type GaN layers is much higher than in i-type GaN layers. If the p-type layers are used in an LED, since the low temperature anneal does not degrade the GaN layers' crystallinity, the intensity of the LED's emitted light is not decreased by the anneal process.
    Type: Application
    Filed: April 30, 2001
    Publication date: October 31, 2002
    Inventors: Stephen A. Stockman, Serge L. Rudaz, Mira S. Misra