Patents by Inventor Miriam P. Leffler

Miriam P. Leffler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7612011
    Abstract: A homogeneous ceria-based mixed-metal oxide, useful as a catalyst support, a co-catalyst and/or a getter has a relatively large surface area per weight, typically exceeding 150 m2/g, a structure of nanocrystallites having diameters of less than 4 nm, and including pores larger than the nanocrystallites and having diameters in the range of 4 to about 9 nm. The ratio of pore volumes, VP, to skeletal structure volumes, VS, is typically less than about 2.5, and the surface area per unit volume of the oxide material is greater than 320 m2/cm3, for low internal mass transfer resistance and large effective surface area for reaction activity. The mixed metal oxide is ceria-based, includes Zr and or Hf, and is made by a novel co-precipitation process. A highly dispersed catalyst metal, typically a noble metal such as Pt, may be loaded on to the mixed metal oxide support from a catalyst metal-containing solution following a selected acid surface treatment of the oxide support.
    Type: Grant
    Filed: November 28, 2006
    Date of Patent: November 3, 2009
    Assignee: UTC Power Corporation
    Inventors: Thomas Henry Vanderspurt, Fabienne Wijzen, Xia Tang, Miriam P. Leffler, Rhonda R. Willigan, Caroline A. Newman, Rakesh Radhakrishnan, Fangxia Feng, Bruce Leon Laube, Zissis Dardas, Susanne M. Opalka, Ying She
  • Patent number: 7166263
    Abstract: A homogeneous ceria-based mixed-metal oxide, useful as a catalyst support, a co-catalyst and/or a getter has a relatively large surface area per weight, typically exceeding 150 m2/g, a structure of nanocrystallites having diameters of less than 4 nm, and including pores larger than the nanocrystallites and having diameters in the range of 4 to about 9 nm. The ratio of pore volumes, VP, to skeletal structure volumes, VS, is typically less than about 2.5, and the surface area per unit volume of the oxide material is greater than 320 m2/cm3, for low internal mass transfer resistance and large effective surface area for reaction activity. The mixed metal oxide is ceria-based, includes Zr and or Hf, and is made by a novel co-precipitation process. A highly dispersed catalyst metal, typically a noble metal such as Pt, may be loaded on to the mixed metal oxide support from a catalyst metal-containing solution following a selected acid surface treatment of the oxide support.
    Type: Grant
    Filed: March 28, 2003
    Date of Patent: January 23, 2007
    Assignee: UTC Fuel Cells, LLC
    Inventors: Thomas Henry Vanderspurt, Fabienne Wijzen, Xia Tang, Miriam P. Leffler, Rhonda R. Willigan, Caroline A. Newman, Rakesh Radhakrishnan, Fangxia Feng, Bruce Leon Laube, Zissis Dardas, Susanne M. Opalka, Ying She
  • Publication number: 20030235526
    Abstract: A homogeneous ceria-based mixed-metal oxide, useful as a catalyst support, a co-catalyst and/or a getter has a relatively large surface area per weight, typically exceeding 150 m2/g, a structure of nanocrystallites having diameters of less than 4 nm, and including pores larger than the nanocrystallites and having diameters in the range of 4 to about 9 nm. The ratio of pore volumes, VP, to skeletal structure volumes, VS, is typically less than about 2.5, and the surface area per unit volume of the oxide material is greater than 320 m2/cm3, for low internal mass transfer resistance and large effective surface area for reaction activity. The mixed metal oxide is ceria-based, includes Zr and or Hf, and is made by a novel co-precipitation process. A highly dispersed catalyst metal, typically a noble metal such as Pt, may be loaded on to the mixed metal oxide support from a catalyst metal-containing solution following a selected acid surface treatment of the oxide support.
    Type: Application
    Filed: March 28, 2003
    Publication date: December 25, 2003
    Inventors: Thomas Henry Vanderspurt, Fabienne Wijzen, Xia Tang, Miriam P. Leffler, Rhonda R. Willigan, Caroline A. Newman, Rakesh Radhakrishnan, Fangxia Feng, Bruce Leon Laube, Zissis Dardas, Susanne M. Opalka, Ying She
  • Publication number: 20030186805
    Abstract: A homogeneous ceria-based mixed-metal oxide, useful as a catalyst support, a co-catalyst and/or a getter, is described. The mixed-metal oxide has a relatively large surface area per weight, typically exceeding 150 m2/g, a structure of nanocrystallites having diameters of less than 4 nm, and including pores larger than the nanocrystallites and having diameters in the range of 4 to about 9 nm. The ratio of the pore volumes, VP, to skeletal structure volumes, VS, is typically less than about 2.5, and the surface area per unit volume of the oxide material is greater than 320 m2/cm3, such that the structural morphology supports both a relatively low internal mass transfer resistance and large effective surface area for reaction activity of interest.
    Type: Application
    Filed: March 28, 2002
    Publication date: October 2, 2003
    Inventors: Thomas Henry Vanderspurt, Fabienne Wijzen, Xia Tang, Miriam P. Leffler