Patents by Inventor Mirko Frank

Mirko Frank has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9664633
    Abstract: A resistive hydrogen sensor has at least two electrical connections and at least one resistance layer containing at least one suitable material for incorporating hydrogen, via which the electrical connections are connected to each other. The resistance layer adjoins at least one interface on a contact layer, which contains at least one chemical element from the fourth subgroup of the periodic table and/or carbon. The contact layer connected in series between the electrical connections to the resistance layer.
    Type: Grant
    Filed: January 27, 2009
    Date of Patent: May 30, 2017
    Assignee: Micronas GmbH
    Inventors: Gilbert Erdler, Holger Reinecke, Claas Müller, Mirko Frank
  • Patent number: 9543606
    Abstract: The present invention pertains to a fuel cell with a storage unit (4) for storing hydrogen (Hx), with a proton conductive layer, which covers a surface of the storage unit (4), and with a cathode (7) on a side of the proton conductive layer, which side is located opposite, wherein the storage unit (4) is directly coupled with an anode and/or the storage unit (4) is incorporated in a substrate (1) of a semiconductor. The storage unit (4) is preferably connected to the substrate (1) at least via a stress compensation layer (3).
    Type: Grant
    Filed: March 21, 2014
    Date of Patent: January 10, 2017
    Assignee: Micronas GmbH
    Inventors: Mirko Lehmann, Claas Mueller, Holger Reinecke, Mirko Frank, Gilbert Erdler
  • Patent number: 9093690
    Abstract: The invention relates to a sensor fuel cell that can be activated by a first substance (O2) in its environment. The sensor fuel cell includes a catalytically active anode, a cathode that has a cathode surface at least partially exposed to the environment, and a proton-conductive membrane located between the anode and the cathode so as to convey protons through from the anode to the cathode. An anode surface of the anode is at least partially exposed to the environment for access of at least one second substance (H2) from the environment to the anode. Such a disposition enables access of a first reactant in the form for example of oxygen from the ambient air to the cathode, and additionally access of a second reactant in the form for example of hydrogen from the ambient air to the free surface of the anode.
    Type: Grant
    Filed: November 6, 2008
    Date of Patent: July 28, 2015
    Assignee: Micronas GmbH
    Inventors: Gilbert Erdler, Holger Reinecke, Claas Mueller, Mirko Frank
  • Publication number: 20140205927
    Abstract: The present invention pertains to a fuel cell with a storage unit (4) for storing hydrogen (Hx), with a proton conductive layer, which covers a surface of the storage unit (4), and with a cathode (7) on a side of the proton conductive layer, which side is located opposite, wherein the storage unit (4) is directly coupled with an anode and/or the storage unit (4) is incorporated in a substrate (1) of a semiconductor. The storage unit (4) is preferably connected to the substrate (1) at least via a stress compensation layer (3).
    Type: Application
    Filed: March 21, 2014
    Publication date: July 24, 2014
    Applicant: Micronas GmbH
    Inventors: Mirko LEHMANN, Claas MUELLER, Holger REINECKE, Mirko FRANK, Gilbert ERDLER
  • Patent number: 8715884
    Abstract: The present invention pertains to a fuel cell with a storage unit (4) for storing hydrogen (Hx), with a proton conductive layer, which covers a surface of the storage unit (4), and with a cathode (7) on a side of the proton conductive layer, which side is located opposite, wherein the storage unit (4) is directly coupled with an anode and/or the storage unit (4) is incorporated in a substrate (1) of a semiconductor. The storage unit (4) is preferably connected to the substrate (1) at least via a stress compensation layer (3).
    Type: Grant
    Filed: October 10, 2008
    Date of Patent: May 6, 2014
    Assignee: Micronas GmbH
    Inventors: Mirko Lehmann, Claas Muller, Holger Reinecke, Mirko Frank, Gilbert Erdler
  • Patent number: 8592091
    Abstract: In a method for producing a proton-conductive, structured electrolyte membrane, particularly for a fuel cell, a coating, which comprises at least one ion-conductive cross-linking component having at least one acid group and at least one photoactive substances interacting therewith, is applied onto a solid body surface. The coating is optically masked in that at least one region of the coating, in which the electrolyte membrane is supposed to be, is exposed such that the cross-linking component cross-links with the photoactive substances to form a polymer and/or copolymer network adhering to the solid body surface. At least one unexposed region of the coating is removed in order to structure the electrolyte membrane.
    Type: Grant
    Filed: January 10, 2011
    Date of Patent: November 26, 2013
    Assignee: Micronas GmbH
    Inventors: Gilbert Erdler, Holger Reinecke, Mirko Frank, Claas Mueller, Jochen Kerres
  • Publication number: 20120021323
    Abstract: The invention relates to a fuel cell (1) having a substrate (2) comprising an opening (10) and a layer stack (7) disposed on the substrate (2). Said stack comprises an electrode (3) designed as a self-supporting metal membrane covering the opening (10), said membrane being permeable to hydrogen atoms and blocking the passage of gaseous or liquid fuel, a counter electrode (6), and an electrolytelayer (4) adjoining a catalytic material and disposed between the electrode (3) and the counter electrotrode (6). In order to feed in a fuel comprising protons, the fuel cell (1) has a fuel supply device (14) connected to the electrode (3) by means of the opening (10). In order to feed in a reactant, a reactant supply device (15) is connected to the electrolyte layer (4) by means of the counter electrode (6). The reactant is suitable for reacting with the protons in order to generate electric current.
    Type: Application
    Filed: December 16, 2009
    Publication date: January 26, 2012
    Inventors: Gilbert Erdler, Mirko Frank, Holger Reinecke, Claas Mueller
  • Publication number: 20110217659
    Abstract: In a method for producing a proton-conductive, structured electrolyte membrane, particularly for a fuel cell, a coating, which comprises at least one ion-conductive cross-linking component having at least one acid group and at least one photoactive substances interacting therewith, is applied onto a solid body surface. The coating is optically masked in that at least one region of the coating, in which the electrolyte membrane is supposed to be, is exposed such that the cross-linking component cross-links with the photoactive substances to form a polymer and/or copolymer network adhering to the solid body surface. At least one unexposed region of the coating is removed in order to structure the electrolyte membrane.
    Type: Application
    Filed: January 10, 2011
    Publication date: September 8, 2011
    Inventors: Gilbert ERDLER, Holger Reinecke, Mirko Frank, Claas Mueller, Jochen Kerres
  • Publication number: 20090325038
    Abstract: The present invention pertains to a fuel cell with a storage unit (4) for storing hydrogen (Hx), with a proton conductive layer, which covers a surface of the storage unit (4), and with a cathode (7) on a side of the proton conductive layer, which side is located opposite, wherein the storage unit (4) is directly coupled with an anode and/or the storage unit (4) is incorporated in a substrate (1) of a semiconductor. The storage unit (4) is preferably connected to the substrate (1) at least via a stress compensation layer (3).
    Type: Application
    Filed: October 10, 2008
    Publication date: December 31, 2009
    Applicant: MICRONAS GmbH
    Inventors: Mirko Lehmann, Claas Muller, Holger Reinecke, Mirko Frank, Gilbert Erdler
  • Publication number: 20090188316
    Abstract: A resistive hydrogen sensor has at least two electrical connections and at least one resistance layer containing at least one suitable material for incorporating hydrogen, via which the electrical connections are connected to each other. The resistance layer adjoins at least one interface on a contact layer, which contains at least one chemical element from the fourth subgroup of the periodic table and/or carbon. The contact layer connected in series between the electrical connections to the resistance layer.
    Type: Application
    Filed: January 27, 2009
    Publication date: July 30, 2009
    Applicant: Micronas GmbH
    Inventors: Gilbert Erdler, Holger Reinecke, Claas Muller, Mirko Frank
  • Publication number: 20090136815
    Abstract: The invention relates to a sensor fuel cell that can be activated by a first substance (O2) in its environment. The sensor fuel cell includes a catalytically active anode, a cathode that has a cathode surface at least partially exposed to the environment, and a proton-conductive membrane located between the anode and the cathode so as to convey protons through from the anode to the cathode. An anode surface of the anode is at least partially exposed to the environment for access of at least one second substance (H2) from the environment to the anode. Such a disposition enables access of a first reactant in the form for example of oxygen from the ambient air to the cathode, and additionally access of a second reactant in the form for example of hydrogen from the ambient air to the free surface of the anode.
    Type: Application
    Filed: November 6, 2008
    Publication date: May 28, 2009
    Inventors: Gilbert Erdler, Holger Reinecke, Claas Mueller, Mirko Frank