Patents by Inventor Miroslaw Bartkowiak

Miroslaw Bartkowiak has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180136204
    Abstract: Provided herein are methods, systems, and devices for detecting and/or identifying one or more specific microorganisms in a culture sample. Indicator particles, such as surface enhanced Raman spectroscopy (SERS)-active nanoparticles, each having associated therewith one or more specific binding members having an affinity for the one or more microorganisms of interest, can form a complex with specific microorganisms in the culture sample. Further, agitating magnetic capture particles also having associated therewith one or more specific binding members having an affinity for the one or more microorganisms of interest can be used to capture the microorganism-indicator particle complex and concentrate the complex in a localized area of an assay vessel for subsequent detection and identification. The complex can be dispersed, pelleted, and redispersed so that the culture sample can be retested a number of times during incubation so as to allow for real-time monitoring of the culture sample.
    Type: Application
    Filed: November 27, 2017
    Publication date: May 17, 2018
    Applicant: BECTON DICKINSON AND COMPANY
    Inventors: Kristin Weidemaier, Robert L. Campbell, Erin Gooch Carruthers, Adam Craig Curry, Kevin G. Dolan, Andrea Liebmann-Vinson, Wendy Dale Woodley, Melody M.H. Kuroda, Ammon David Lentz, Dwight Livingston, Michael Justin Lizzi, Artis R. Lockhart, Ernie Ritchey, Eric A. Fallows, Donald E. Gorelick, Jack Kessler, Spencer Lovette, Jeffrey S. Ojala, Mark A. Talmer, Miroslaw Bartkowiak, Scott N. Danhof, Gregory S. Kramer, Thomas D. Haubert, Michael L. Marshall, James A. Prescott, Randy J. Somerville, M. Scott Ulrich, David S. Sebba
  • Patent number: 9874555
    Abstract: Provided herein are methods, systems, and devices for detecting and/or identifying one or more specific microorganisms in a culture sample. Indicator particles, such as surface enhanced Raman spectroscopy (SERS)-active nanoparticles, each having associated therewith one or more specific binding members having an affinity for the one or more microorganisms of interest, can form a complex with specific microorganisms in the culture sample. Further, agitating magnetic capture particles also having associated therewith one or more specific binding members having an affinity for the one or more microorganisms of interest can be used to capture the microorganism-indicator particle complex and concentrate the complex in a localized area of an assay vessel for subsequent detection and identification. The complex can be dispersed, pelleted, and redispersed so that the culture sample can be retested a number of times during incubation so as to allow for real-time monitoring of the culture sample.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: January 23, 2018
    Assignee: BECTON, DICKINSON AND COMPANY
    Inventors: Kristin Weidemaier, Robert L. Campbell, Erin Gooch Carruthers, Adam C. Curry, Kevin G. Dolan, Andrea Liebmann-Vinson, Wendy Dale Woodley, Melody M. H. Kuroda, Eric A. Fallows, Miroslaw Bartkowiak, Scott N. Danhof, Gregory S. Kramer, Thomas D. Haubert, Michael L. Marshall, James A. Prescott, Randy J. Somerville, M. Scott Ulrich, David S. Sebba
  • Publication number: 20150118688
    Abstract: Provided herein are methods, systems, and devices for detecting and/or identifying one or more specific microorganisms in a culture sample. Indicator particles, such as surface enhanced Raman spectroscopy (SERS)-active nanoparticles, each having associated therewith one or more specific binding members having an affinity for the one or more microorganisms of interest, can form a complex with specific microorganisms in the culture sample. Further, agitating magnetic capture particles also having associated therewith one or more specific binding members having an affinity for the one or more microorganisms of interest can be used to capture the microorganism-indicator particle complex and concentrate the complex in a localized area of an assay vessel for subsequent detection and identification. The complex can be dispersed, pelleted, and redispersed so that the culture sample can be retested a number of times during incubation so as to allow for real-time monitoring of the culture sample.
    Type: Application
    Filed: March 15, 2013
    Publication date: April 30, 2015
    Inventors: Kristin Weidemaier, Robert L. Campbell, Erin Gooch Carruthers, Adam C. Curry, Kevin G. Dolan, Andrea Liebmann-Vinson, Wendy Dale Woodley, Melody M.H. Kuroda, Ammon David Lentz, Dwight Livingston, Michael Justin Lizzi, Artis R. Lockhart, Ernie Ritchey, Eric A. Fallows, Donald E. Gorelick, Jack Kessler, Spencer Lovette, Jeffrey S. Ojala, Mark A. Talmer, Miroslaw Bartkowiak, Scott N. Danhof, Gregory S. Kramer, Thomas D. Haubert, Michael L. Marshall, James A. Prescott, Randy J. Somerville, M. Scott Ulrich, David S. Sebba
  • Patent number: 8386184
    Abstract: Systems and methods for calculating an initial amount of target nucleic acid N0 in a sample are provided. A plurality of fluorescent measurements is received. Each respective fluorescent measurement FSn is taken in a different cycle n in a PCR amplification experiment of the sample. Then, a model for the PCR amplification experiment is computed. For each respective fluorescent measurement, the model comprises a respective equation for Nn, where (i) Nn is the calculated amount of the target nucleic acid in cycle n of the corresponding PCR amplification experiment, and (ii) the equation for Nn is expressed in terms of K and N0, where K is the Michaelis-Menton constant. The model can be refined by adjusting K and N0 until differences between model values Nn and corresponding fluorescent measurements are minimized, thereby calculating the initial amount of a target nucleic acid N0 as the minimized value for N0 for the model.
    Type: Grant
    Filed: August 22, 2008
    Date of Patent: February 26, 2013
    Assignee: Becton, Dickinson and Company
    Inventors: Miroslaw Bartkowiak, Richard L. Moore
  • Patent number: 7711493
    Abstract: The present invention comprises one or more microprocessors programmed to execute methods for improving the performance of an analyte monitoring device including prediction of glucose levels in a subject by utilizing a predicted slower-time constant (1/k2). In another aspect of the invention, pre-exponential terms (1/c2) can be used to provide a correction for signal decay (e.g., a Gain Factor). In other aspects, the present invention relates to one or more microprocessors comprising programming to control execution of (i) methods for conditional screening of data points to reduce skipped measurements, (ii) methods for qualifying interpolated/extrapolated analyte measurement values, (iii) various integration methods to obtain maximum integrals of analyte-related signals, as well as analyte monitoring devices comprising such microprocessors.
    Type: Grant
    Filed: November 9, 2005
    Date of Patent: May 4, 2010
    Assignee: Animas Corporation
    Inventors: Miroslaw Bartkowiak, Wesley S. Harper, Eray Kulcu, Matthew J. Lesho, Janet A. Tamada
  • Patent number: 7523004
    Abstract: The present invention comprises one or more microprocessors programmed to execute methods for improving the performance of an analyte monitoring device including prediction of glucose levels in a subject by utilizing a predicted slower-time constant (1/k2). In another aspect of the invention, pre-exponential terms (1/c2) can be used to provide a correction for signal decay (e.g., a Gain Factor). In other aspects, the present invention relates to one or more microprocessors comprising programming to control execution of (i) methods for conditional screening of data points to reduce skipped measurements, (ii) methods for qualifying interpolated/extrapolated analyte measurement values, (iii) various integration methods to obtain maximum integrals of analyte-related signals, as well as analyte monitoring devices comprising such microprocessors.
    Type: Grant
    Filed: November 9, 2005
    Date of Patent: April 21, 2009
    Assignee: Animas Technologies, LLC
    Inventors: Miroslaw Bartkowiak, Wesley S. Harper, Eray Kulcu, Matthew J. Lesho, Janet A. Tamada
  • Patent number: 7519478
    Abstract: The present invention comprises one or more microprocessors programmed to execute methods for improving the performance of an analyte monitoring device including prediction of glucose levels in a subject by utilizing a predicted slower-time constant (1/k2). In another aspect of the invention, pre-exponential terms (1/c2) can be used to provide a correction for signal decay (e.g., a Gain Factor). In other aspects, the present invention relates to one or more microprocessors comprising programming to control execution of (i) methods for conditional screening of data points to reduce skipped measurements, (ii) methods for qualifying interpolated/extrapolated analyte measurement values, (iii) various integration methods to obtain maximum integrals of analyte-related signals, as well as analyte monitoring devices comprising such microprocessors.
    Type: Grant
    Filed: November 9, 2005
    Date of Patent: April 14, 2009
    Assignee: Animas Technologies, LLC
    Inventors: Miroslaw Bartkowiak, Wesley S. Harper, Eray Kulcu, Matthew J. Lesho, Janet A. Tamada
  • Publication number: 20090068666
    Abstract: Systems and methods for calculating an initial amount of target nucleic acid N0 in a sample are provided. A plurality of fluorescent measurements is received. Each respective fluorescent measurement FSn is taken in a different cycle n in a PCR amplification experiment of the sample. Then, a model for the PCR amplification experiment is computed. For each respective fluorescent measurement, the model comprises a respective equation for Nn, where (i) Nn is the calculated amount of the target nucleic acid in cycle n of the corresponding PCR amplification experiment, and (ii) the equation for Nn is expressed in terms of K and N0, where K is the Michaelis-Menton constant. The model can be refined by adjusting K and N0 until differences between model values Nn and corresponding fluorescent measurements are minimized, thereby calculating the initial amount of a target nucleic acid N0 as the minimized value for N0 for the model.
    Type: Application
    Filed: August 22, 2008
    Publication date: March 12, 2009
    Applicant: Becton, Dickinson and Company
    Inventors: Miroslaw Bartkowiak, Richard L. Moore
  • Publication number: 20070019502
    Abstract: A system comprising one or more sample vessels is provided, the sample vessels comprising a liquid growth medium and a stirrer element, the stirrer element capable of being influenced by a magnetic force, and an incubation and measurement module comprising one or more openings for holding the one or more sample vessels. The incubation and measurement module further comprises at least two drive magnets associated with each of the sample vessels, and a magnet driver adapted to repeatedly move each of the at least two drive magnets toward and away from the surface of the associated sample vessel.
    Type: Application
    Filed: March 28, 2006
    Publication date: January 25, 2007
    Applicant: Becton, Dickinson and Company
    Inventors: Timothy Foley, P. Beaty, Michael Walters, Alexander Clark, Dwight Livingston, A. Lentz, Miroslaw Bartkowiak, Daniel Schwartz, Nicholas Bachur
  • Publication number: 20060085137
    Abstract: The present invention comprises one or more microprocessors programmed to execute methods for improving the performance of an analyte monitoring device including prediction of glucose levels in a subject by utilizing a predicted slower-time constant (1/k2). In another aspect of the invention, pre-exponential terms (1/c2) can be used to provide a correction for signal decay (e.g., a Gain Factor). In other aspects, the present invention relates to one or more microprocessors comprising programming to control execution of (i) methods for conditional screening of data points to reduce skipped measurements, (ii) methods for qualifying interpolated/extrapolated analyte measurement values, (iii) various integration methods to obtain maximum integrals of analyte-related signals, as well as analyte monitoring devices comprising such microprocessors.
    Type: Application
    Filed: November 9, 2005
    Publication date: April 20, 2006
    Inventors: Miroslaw Bartkowiak, Wesley Harper, Eray Kulcu, Matthew Lesho, Janet Tamada
  • Publication number: 20060074564
    Abstract: The present invention comprises one or more microprocessors programmed to execute methods for improving the performance of an analyte monitoring device including prediction of glucose levels in a subject by utilizing a predicted slower-time constant (1/k2). In another aspect of the invention, pre-exponential terms (1/c2) can be used to provide a correction for signal decay (e.g., a Gain Factor). In other aspects, the present invention relates to one or more microprocessors comprising programming to control execution of (i) methods for conditional screening of data points to reduce skipped measurements, (ii) methods for qualifying interpolated/extrapolated analyte measurement values, (iii) various integration methods to obtain maximum integrals of analyte-related signals, as well as analyte monitoring devices comprising such microprocessors.
    Type: Application
    Filed: November 9, 2005
    Publication date: April 6, 2006
    Inventors: Miroslaw Bartkowiak, Wesley Harper, Eray Kulcu, Matthew Lesho, Janet Tamada
  • Publication number: 20060063218
    Abstract: The present invention comprises one or more microprocessors programmed to execute methods for improving the performance of an analyte monitoring device including prediction of glucose levels in a subject by utilizing a predicted slower-time constant (1/k2). In another aspect of the invention, pre-exponential terms (1/c2) can be used to provide a correction for signal decay (e.g., a Gain Factor). In other aspects, the present invention relates to one or more microprocessors comprising programming to control execution of (i) methods for conditional screening of data points to reduce skipped measurements, (ii) methods for qualifying interpolated/extrapolated analyte measurement values, (iii) various integration methods to obtain maximum integrals of analyte-related signals, as well as analyte monitoring devices comprising such microprocessors.
    Type: Application
    Filed: November 9, 2005
    Publication date: March 23, 2006
    Inventors: Miroslaw Bartkowiak, Wesley Harper, Eray Kulcu, Matthew Lesho, Janet Tamada
  • Publication number: 20030235817
    Abstract: The present invention comprises one or more microprocessors programmed to execute methods for improving the performance of an analyte monitoring device including prediction of glucose levels in a subject by utilizing a predicted slower-time constant (1/k2). In another aspect of the invention, pre-exponential terms (1/c2) can be used to provide a correction for signal decay (e.g., a Gain Factor). In other aspects, the present invention relates to one or more microprocessors comprising programming to control execution of (i) methods for conditional screening of data points to reduce skipped measurements, (ii) methods for qualifying interpolated/extrapolated analyte measurement values, (iii) various integration methods to obtain maximum integrals of analyte-related signals, as well as analyte monitoring devices comprising such microprocessors.
    Type: Application
    Filed: March 21, 2003
    Publication date: December 25, 2003
    Inventors: Miroslaw Bartkowiak, Wesley S. Harper, Eray Kulcu, Matthew J. Lesho, Janet A. Tamada
  • Patent number: 5854586
    Abstract: A varistor includes a Bi-free, essentially homogeneous sintered body of a ceramic composition including, expressed as nominal weight %, 0.2-4.0% oxide of at least one rare earth element, 0.5-4.0% Co.sub.3 O.sub.4, 0.05-0.4% K.sub.2 O, 0.05-0.2% Cr.sub.2 O.sub.3, 0-0.2% CaO, 0.00005-0.01% Al.sub.2 O.sub.3, 0-2% MnO, 0-0.05% MgO, 0-0.5% TiO.sub.3, 0-0.2% SnO.sub.2, 0-0.02% B.sub.2 O.sub.3, balance ZnO.
    Type: Grant
    Filed: September 17, 1997
    Date of Patent: December 29, 1998
    Assignee: Lockheed Martin Energy Research Corporation
    Inventors: April D. McMillan, Frank A. Modine, Robert J. Lauf, Mohammad A. Alim, Gerald D. Mahan, Miroslaw Bartkowiak