Patents by Inventor Mischa Schulze

Mischa Schulze has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11268861
    Abstract: An SMD-enabled infrared thermopile sensor has at least one miniaturized thermopile pixel on a monolithically integrated sensor chip accommodated in a hermetically sealed housing which consists of an at least partially non-metallic housing substrate and a housing cover. A gas or a gas mixture is contained in the housing. The sensor has a particularly low overall height, in particular in the z direction. This is achieved by virtue of an aperture opening being introduced in the housing cover opposite the thermopile pixel(s), which aperture opening is closed with a focusing lens which focuses the radiation from objects onto the thermopile pixel(s) on the housing substrate, and by virtue of a signal processing unit being integrated on the same sensor chip next to the thermopile pixels, wherein the total housing height and the housing cover are at most 3 mm or less than 2.5 mm.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: March 8, 2022
    Assignee: Heimann Sensor GmbH
    Inventors: Jörg Schieferdecker, Frank Herrmann, Christian Schmidt, Wilhelm Leneke, Marion Simon, Karlheinz Storck, Mischa Schulze
  • Publication number: 20200370963
    Abstract: A thermopile infrared individual sensor includes a housing filled with a gaseous medium. It has optics and one or more sensor chips with individual sensor cells with infrared sensor structures with reticulated membranes, infrared-sensitive regions of which are each spanned by at least one beam over a cavity in a carrier body. The thermopile infrared sensor uses monolithic Si-micromechanics technology for contactless temperature measurements. In the case of a sufficiently large receiver surface, this outputs a high signal with a high response speed. A plurality of individual adjacent sensor cells are combined with respectively one infrared-sensitive region with thermopile structures on the membrane on a common carrier body of an individual chip to a single thermopile sensor structure with a signal output in the housing, consisting of a cap sealed with a base plate with a common gaseous medium.
    Type: Application
    Filed: August 7, 2020
    Publication date: November 26, 2020
    Applicant: Heimann Sensor GmbH
    Inventors: Marion Simon, Mischa SCHULZE, Wilhelm Leneke, Karlheinz Storck, Frank HERRMANN, Christian SCHMIDT, Jörg Schieferdecker
  • Patent number: 10794768
    Abstract: The invention relates to a thermopile infrared individual sensor in a housing that is filled with a gaseous medium having optics and one or more sensor chips with individual sensor cells with infrared sensor structures with reticulated membranes, the infrared-sensitive regions of which are spanned by, in each case, at least one beam over a cavity in a carrier body with good thermal conduction. The object of the invention consists of specifying a thermopile infrared sensor using monolithic Si-micromechanics technology for contactless temperature measurements, which, in the case of a sufficiently large receiver surface, outputs a high signal with a high response speed and which can operated in a gaseous medium with normal pressure or reduced pressure and which is producible in mass produced numbers without complicated technology for sealing the housing.
    Type: Grant
    Filed: June 13, 2017
    Date of Patent: October 6, 2020
    Assignee: Heimann Sensor GmbH
    Inventors: Marion Simon, Mischa Schulze, Wilhelm Leneke, Karlheinz Storck, Frank Herrmann, Christian Schmidt, Jörg Schieferdecker
  • Publication number: 20190316967
    Abstract: An SMD-enabled infrared thermopile sensor has at least one miniaturized thermopile pixel on a monolithically integrated sensor chip accommodated in a hermetically sealed housing which consists of an at least partially non-metallic housing substrate and a housing cover. A gas or a gas mixture is contained in the housing. The sensor has a particularly low overall height, in particular in the z direction. This is achieved by virtue of an aperture opening being introduced in the housing cover opposite the thermopile pixel(s), which aperture opening is closed with a focusing lens which focuses the radiation from objects onto the thermopile pixel(s) on the housing substrate, and by virtue of a signal processing unit being integrated on the same sensor chip next to the thermopile pixels, wherein the total housing height and the housing cover are at most 3 mm or less than 2.5 mm.
    Type: Application
    Filed: December 22, 2017
    Publication date: October 17, 2019
    Inventors: Jörg Schieferdecker, Frank HERRMANN, Christian SCHMIDT, Wilhelm Leneke, Marion Simon, Karlheinz Storck, Mischa SCHULZE
  • Publication number: 20190265105
    Abstract: The invention relates to a thermopile infrared individual sensor in a housing that is filled with a gaseous medium having optics and one or more sensor chips with individual sensor cells with infrared sensor structures with reticulated membranes, the infrared-sensitive regions of which are spanned by, in each case, at least one beam over a cavity in a carrier body with good thermal conduction. The object of the invention consists of specifying a thermopile infrared sensor using monolithic Si-micromechanics technology for contactless temperature measurements, which, in the case of a sufficiently large receiver surface, outputs a high signal with a high response speed and which can operated in a gaseous medium with normal pressure or reduced pressure and which is producible in mass produced numbers without complicated technology for sealing the housing.
    Type: Application
    Filed: June 13, 2017
    Publication date: August 29, 2019
    Applicant: Heimann Sensor GmbH
    Inventors: Marion SIMON, Mischa SCHULZE, Wilhelm LENEKE, Karlheinz STORCK, Frank HERRMANN, Christian SCHMIDT, Jörg SCHIEFERDECKER
  • Patent number: 8592765
    Abstract: A thermal infrared sensor is provided in a housing with optics and a chip with thermoelements on a membrane. The membrane spans a frame-shaped support body that is a good heat conductor, and the support body has vertical or approximately vertical walls. The thermopile sensor structure consists of a few long thermoelements per sensor cell. The thermoelements being arranged on connecting webs that connect together hot contacts on an absorber layer to cold contacts of the thermoelements. The membrane is suspended by one or more connecting webs and has, on both sides of the long thermoelements, narrow slits that separate the connecting webs from both the central region and also the support body. At least the central region is covered by the absorber layer.
    Type: Grant
    Filed: January 13, 2011
    Date of Patent: November 26, 2013
    Assignee: HEIMANN Sensor GmbH
    Inventors: Bodo Forg, Frank Herrmann, Wilhelm Leneke, Joerg Schieferdecker, Marion Simon, Karlheinz Storck, Mischa Schulze
  • Publication number: 20110174978
    Abstract: A thermal infrared sensor is provided in a housing with optics and a chip with thermoelements on a membrane. The membrane spans a frame-shaped support body that is a good heat conductor, and the support body has vertical or approximately vertical walls. The object is to provide a thermopile infrared sensor in monolithic silicon micromachining technology, wherein the infrared sensor has a high thermal resolution capacity with a small chip size, a high degree of filling and a high response rate. The thermopile sensor structure consists of a few long thermoelements per sensor cell. The thermoelements being arranged on connecting webs that connect together hot contacts on an absorber layer to cold contacts of the thermoelements. The membrane is suspended by one or more connecting webs and has, on both sides of the long thermoelements, narrow slits that separate the connecting webs from both the central region and also the support body. At least the central region is covered by the absorber layer.
    Type: Application
    Filed: January 13, 2011
    Publication date: July 21, 2011
    Applicant: HEIMANN SENSOR GMBH
    Inventors: Bodo FORG, Frank HERRMANN, Wilhelm LENEKE, Joerg SCHIEFERDECKER, Marion SIMON, Karlheinz STORCK, Mischa SCHULZE
  • Patent number: 7842922
    Abstract: A thermopile infrared sensor array, comprises a sensor chip with a number of thermopile sensor elements, made from a semiconductor substrate and corresponding electronic components. The sensor chip is mounted on a support circuit board and enclosed by a cap in which a lens is arranged. The aim is the production of a monolithic infrared sensor array with a high thermal resolution capacity with a small chip size and which may be economically produced. The aim is achieved by arranging a thin membrane made from non-conducting material on the semiconductor substrate of the sensor chip on which the thermopile sensor elements are located in an array. Under each thermopile sensor element, the back side of the membrane is uncovered in a honeycomb pattern by etching and the electronic components are arranged in the boundary region of the sensor chip. An individual pre-amplifier with a subsequent low-pass filter may be provided for each column and each row of sensor elements.
    Type: Grant
    Filed: May 16, 2006
    Date of Patent: November 30, 2010
    Assignee: Heimann Sensor GmbH
    Inventors: Wilhelm Leneke, Marion Simon, Mischa Schulze, Karlheinz Storck, Joerg Schieferdecker
  • Publication number: 20080216883
    Abstract: A thermopile infrared sensor array, comprises a sensor chip with a number of thermopile sensor elements, made from a semiconductor substrate and corresponding electronic components. The sensor chip is mounted on a support circuit board and enclosed by a cap in which a lens is arranged. The aim is the production of a monolithic infrared sensor array with a high thermal resolution capacity with a small chip size and which may be economically produced. The aim is achieved by arranging a thin membrane made from non-conducting material on the semiconductor substrate of the sensor chip on which the thermopile sensor elements are located in an array. Under each thermopile sensor element, the back side of the membrane is uncovered in a honeycomb pattern by etching and the electronic components are arranged in the boundary region of the sensor chip. An individual pre-amplifier with a subsequent low-pass filter may be provided for each column and each row of sensor elements.
    Type: Application
    Filed: May 16, 2006
    Publication date: September 11, 2008
    Applicant: HEIMANN Sensor GmbH
    Inventors: Wilhelm Leneke, Marion Simon, Mischa Schulze, Karlheinz Storck, Joerg Schieferdecker
  • Patent number: 6921895
    Abstract: A sensor module comprises a radiation-sensitive sensor element (12), a sensor signal processing circuit (13, 41a, 44a) receiving the output signal of the sensor element (12) and obtaining a radiation-dependent first electric signal therefrom, a temperature-sensitive reference means (14, 15, 41b, 43, 44b) providing a temperature-dependent second electric signal and a signal combining means (16) for combining the two electric signals. The sensor signal processing circuit (13, 41a, 44a), the reference means (14, 15, 41b, 44b) and the combining means (16) are formed on a single chip (20, 21), and the chip (20, 21) and the sensor element (12) are accommodated in a common housing (22, 62, 64).
    Type: Grant
    Filed: February 13, 1999
    Date of Patent: July 26, 2005
    Assignee: PerkinElmer Optoelectronics GmbH
    Inventors: Jörg Schieferdecker, Mischa Schulze
  • Patent number: 5826982
    Abstract: The present invention concerns a sensor module with a hollow mirror (3) at whose focal point a sensor element (4) has been arranged whose output signal is compared with a reference signal and is transformed into a temperature signal in an evaluation circuit (15). The sensor module has a thermopile (6) in whose immediate vicinity a temperature reference element (5) has been arranged; a first pre-amplifier (8, 9), that is capable of being calibrated, amplifies the output signal from the thermopile (6); a second pre-amplifier (10-13) amplifies the output signal from the temperature reference element (5); and a third pre-amplifier (14) is connected into the circuit in the form of a difference amplifier and forms the difference in signal between the outputs from the first pre-amplifier (8, 9) and the second pre-amplifier (10-13).
    Type: Grant
    Filed: June 14, 1996
    Date of Patent: October 27, 1998
    Assignee: Heimann Optoelectronics GmbH
    Inventors: Jorg Schieferdecker, Reiner Quad, Mischa Schulze