Patents by Inventor Misha Filippov

Misha Filippov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11174021
    Abstract: Systems and methods are provided for powering and controlling flight of an unmanned aerial vehicle. The unmanned aerial vehicles can be used in a networked system under common control and operation and can be used for a variety of applications. Selected embodiments can operate while tethered to a portable control system. A high speed tether management system can be used to facilitate both mobile and static tethered operation. Modular components provide for both tethered and fully autonomous flight operations.
    Type: Grant
    Filed: March 24, 2017
    Date of Patent: November 16, 2021
    Assignee: FLIR DETECTION, INC.
    Inventors: Bretton E. Anderson, Felipe Bohorquez, Misha Filippov, Helen Greiner, Jason Jeffords, Sam Johnson, Kevin Michael Mcclure, Kim Salazar, Kenneth D. Sebesta, Andrew M. Shein, Perry Stoll, Chikyung Won, Alexey Zaparovanny
  • Publication number: 20200244173
    Abstract: A polarity-selectable high voltage direct current power supply including a first drive assembly that transforms a first low voltage DC input into a first medium voltage alternating current output; a first HV output assembly that transforms the first LV AC output into a first HV DC output, wherein the first HV output assembly defines a first input stage; a polarity selector coupled between the second output junction of the first drive assembly and the first and second input stages of the first HV output assembly, the polarity selector operable between a first configuration and a second configuration; wherein in the first configuration the first HV DC output has a positive polarity; and wherein in the second configuration the first HV DC output has a negative polarity.
    Type: Application
    Filed: April 16, 2019
    Publication date: July 30, 2020
    Inventors: Paul Fogel, Misha Filippov
  • Publication number: 20200225684
    Abstract: Systems and methods for powering and controlling flight of an unmanned aerial vehicle are provided. The unmanned aerial vehicles can be used in a networked communication system. A tether management system can be used to facilitate both mobile and static tethered operation to provide power and/or voice and data communication.
    Type: Application
    Filed: March 27, 2020
    Publication date: July 16, 2020
    Inventors: Bretton E. ANDERSON, Philip N. LAFOUNTAIN, Alexey ZAPAROVANNY, Misha FILIPPOV, Samir S. MISTRY, Chikyung WON, Kevin Michael MCCLURE, Caroline EKCHIAN
  • Publication number: 20200122830
    Abstract: The present invention relates to systems and methods for powering and controlling flight of an unmanned aerial vehicle. The unmanned aerial vehicles can be used in a networked system under common control and operation and can be used for a variety of applications. Selected embodiments can operate while tethered to a portable control station. A high speed tether management system can be used to facilitate both mobile and static tethered operation. Modular components provide for both tethered and fully autonomous flight operations.
    Type: Application
    Filed: March 24, 2017
    Publication date: April 23, 2020
    Inventors: Bretton E. Anderson, Felipe Bohorquez, Misha Filippov, Helen Greiner, Jason Jeffords, Sam Johnson, Kevin Michael Mcclure, Kim Salazar, Kenneth D. Sebesta, Andrew M. Shein, Perry Stoll, Chikyung Won, Alexey Zaparovanny
  • Patent number: 10088845
    Abstract: System and method for behavior based control of an autonomous vehicle. Actuators (e.g., linkages) manipulate input devices (e.g., articulation controls and drive controls, such as a throttle lever, steering gear, tie rods, throttle, brake, accelerator, or transmission shifter) to direct the operation of the vehicle. Behaviors that characterize the operational mode of the vehicle are associated with the actuators. The behaviors include action sets ranked by priority, and the action sets include alternative actions that the vehicle can take to accomplish its task. The alternative actions are ranked by preference, and an arbiter selects the action to be performed and, optionally, modified.
    Type: Grant
    Filed: November 17, 2016
    Date of Patent: October 2, 2018
    Assignee: iRobot Corporation
    Inventors: Robert Todd Pack, James Allard, David S. Barrett, Misha Filippov, Selma Svendsen
  • Publication number: 20170102701
    Abstract: System and method for behavior based control of an autonomous vehicle. Actuators (e.g., linkages) manipulate input devices (e.g., articulation controls and drive controls, such as a throttle lever, steering gear, tie rods, throttle, brake, accelerator, or transmission shifter) to direct the operation of the vehicle. Behaviors that characterize the operational mode of the vehicle are associated with the actuators. The behaviors include action sets ranked by priority, and the action sets include alternative actions that the vehicle can take to accomplish its task. The alternative actions are ranked by preference, and an arbiter selects the action to be performed and, optionally, modified.
    Type: Application
    Filed: November 17, 2016
    Publication date: April 13, 2017
    Inventors: Robert Todd Pack, James Allard, David S. Barrett, Misha Filippov, Selma Svendsen
  • Patent number: 9513634
    Abstract: System and method for behavior based control of an autonomous vehicle. Actuators (e.g., linkages) manipulate input devices (e.g., articulation controls and drive controls, such as a throttle lever, steering gear, tie rods, throttle, brake, accelerator, or transmission shifter) to direct the operation of the vehicle. Behaviors that characterize the operational mode of the vehicle are associated with the actuators. The behaviors include action sets ranked by priority, and the action sets include alternative actions that the vehicle can take to accomplish its task. The alternative actions are ranked by preference, and an arbiter selects the action to be performed and, optionally, modified.
    Type: Grant
    Filed: July 13, 2015
    Date of Patent: December 6, 2016
    Assignee: iRobot Corporation
    Inventors: Robert Todd Pack, James Allard, David S. Barrett, Misha Filippov, Selma Svendsen
  • Publication number: 20160187885
    Abstract: System and method for behavior based control of an autonomous vehicle. Actuators (e.g., linkages) manipulate input devices (e.g., articulation controls and drive controls, such as a throttle lever, steering gear, tie rods, throttle, brake, accelerator, or transmission shifter) to direct the operation of the vehicle. Behaviors that characterize the operational mode of the vehicle are associated with the actuators. The behaviors include action sets ranked by priority, and the action sets include alternative actions that the vehicle can take to accomplish its task. The alternative actions are ranked by preference, and an arbiter selects the action to be performed and, optionally, modified.
    Type: Application
    Filed: July 13, 2015
    Publication date: June 30, 2016
    Inventors: Robert Todd Pack, James Allard, David S. Barrett, Misha Filippov, Selma Svendsen
  • Patent number: 9110471
    Abstract: System and method for behavior based control of an autonomous vehicle. Actuators (e.g., linkages) manipulate input devices (e.g., articulation controls and drive controls, such as a throttle lever, steering gear, tie rods, throttle, brake, accelerator, or transmission shifter) to direct the operation of the vehicle. Behaviors that characterize the operational mode of the vehicle are associated with the actuators. The behaviors include action sets ranked by priority, and the action sets include alternative actions that the vehicle can take to accomplish its task. The alternative actions are ranked by preference, and an arbiter selects the action to be performed and, optionally, modified.
    Type: Grant
    Filed: December 12, 2011
    Date of Patent: August 18, 2015
    Assignee: iRobot Corporation
    Inventors: Robert Todd Pack, James Allard, David S. Barrett, Misha Filippov, Selma Svendsen
  • Publication number: 20120109423
    Abstract: System and method for behavior based control of an autonomous vehicle. Actuators (e.g., linkages) manipulate input devices (e.g., articulation controls and drive controls, such as a throttle lever, steering gear, tie rods, throttle, brake, accelerator, or transmission shifter) to direct the operation of the vehicle. Behaviors that characterize the operational mode of the vehicle are associated with the actuators. The behaviors include action sets ranked by priority, and the action sets include alternative actions that the vehicle can take to accomplish its task. The alternative actions are ranked by preference, and an arbiter selects the action to be performed and, optionally, modified.
    Type: Application
    Filed: December 12, 2011
    Publication date: May 3, 2012
    Applicant: iRobot Corporation
    Inventors: Robert Todd Pack, James Allard, David S. Barrett, Misha Filippov, Selma Svendsen
  • Patent number: 8078338
    Abstract: System and method for behavior based control of an autonomous vehicle. Actuators (e.g., linkages) manipulate input devices (e.g., articulation controls and drive controls, such as a throttle lever, steering gear, tie rods, throttle, brake, accelerator, or transmission shifter) to direct the operation of the vehicle. Behaviors that characterize the operational mode of the vehicle are associated with the actuators. The behaviors include action sets ranked by priority, and the action sets include alternative actions that the vehicle can take to accomplish its task. The alternative actions are ranked by preference, and an arbiter selects the action to be performed and, optionally, modified.
    Type: Grant
    Filed: October 22, 2004
    Date of Patent: December 13, 2011
    Assignee: iRobot Corporation
    Inventors: Robert Todd Pack, James Allard, David S. Barrett, Misha Filippov, Selma Svendsen
  • Patent number: 7979175
    Abstract: Systems and methods for interruptible autonomous control of a vehicle. Autonomous control is achieved by using actuators that interact with input devices in the vehicle. The actuators (e.g., linkages) manipulate the input devices (e.g., articulation controls and drive controls, such as a throttle, brake, tie rods, steering gear, throttle lever, or accelerator) to direct the operation of the vehicle. Although operating autonomously, manual operation of the vehicle is possible following the detection of events that suggest manual control is desired. Subsequent autonomous control may be permitted, permitted after a prescribed delay, or prevented.
    Type: Grant
    Filed: January 21, 2009
    Date of Patent: July 12, 2011
    Assignee: iRobot Corporation
    Inventors: James Allard, David S. Barrett, Misha Filippov, Robert Todd Pack, Selma Svendsen
  • Publication number: 20090198400
    Abstract: Systems and methods for interruptible autonomous control of a vehicle. Autonomous control is achieved by using actuators that interact with input devices in the vehicle. The actuators (e.g., linkages) manipulate the input devices (e.g., articulation controls and drive controls, such as a throttle, brake, tie rods, steering gear, throttle lever, or accelerator) to direct the operation of the vehicle. Although operating autonomously, manual operation of the vehicle is possible following the detection of events that suggest manual control is desired. Subsequent autonomous control may be permitted, permitted after a prescribed delay, or prevented.
    Type: Application
    Filed: January 21, 2009
    Publication date: August 6, 2009
    Inventors: James Allard, David S. Barrett, Misha Filippov, Robert Todd Pack, Selma Svendsen
  • Patent number: 7499776
    Abstract: Systems and methods for interruptible autonomous control of a vehicle. Autonomous control is achieved by using actuators that interact with input devices in the vehicle. The actuators (e.g., linkages) manipulate the input devices (e.g., articulation controls and drive controls, such as a throttle, brake, tie rods, steering gear, throttle lever, or accelerator) to direct the operation of the vehicle. Although operating autonomously, manual operation of the vehicle is possible following the detection of events that suggest manual control is desired. Subsequent autonomous control may be permitted, permitted after a prescribed delay, or prevented.
    Type: Grant
    Filed: October 22, 2004
    Date of Patent: March 3, 2009
    Assignee: iRobot Corporation
    Inventors: James Allard, David S. Barrett, Misha Filippov, Robert Todd Pack, Selma Svendsen
  • Patent number: 7499774
    Abstract: System and method for processing a safety signal in an autonomous vehicle. Safety signals are typically generated in response to the detection of unsafe conditions or are sent by the vehicle operator. In either case, the safety signals are conveyed using redundant communication paths. The paths include a computer network and a current loop. The safety signals are processed, thereby causing actuators (e.g., linkages) to manipulate input devices (e.g., articulation controls and drive controls, such as a throttle, brake, tie rods, steering gear, throttle lever, accelerator, or transmission shifter). The manipulation ensures the vehicle responds appropriately to the safety signals, for example, by shutting down the vehicle.
    Type: Grant
    Filed: October 22, 2004
    Date of Patent: March 3, 2009
    Assignee: iRobot Corporation
    Inventors: David S. Barrett, James Allard, Misha Filippov, Robert Todd Pack, Selma Svendsen
  • Patent number: 7499804
    Abstract: System and method for multi-modal control of a vehicle. Actuators (e.g., linkages) manipulate input devices (e.g., articulation controls and drive controls, such as a throttle, brake, accelerator, throttle lever, steering gear, tie rods, or transmission shifter) to direct the operation of the vehicle. Behaviors that characterize the operational mode of the vehicle are associated with the actuators. After receipt of a mode select command that dictates the operational mode of the vehicle (e.g., manned operation, remote unmanned tele-operation, assisted remote tele-operation, and autonomous unmanned operation), the actuators manipulate the operator input devices, in accordance with the behaviors, to affect the desired operational mode.
    Type: Grant
    Filed: October 22, 2004
    Date of Patent: March 3, 2009
    Assignee: iRobot Corporation
    Inventors: Selma Svendsen, James Allard, David S. Barrett, Misha Filippov, Robert Todd Pack
  • Patent number: 7499775
    Abstract: System and method for tracking obstacles by an autonomous vehicle. Localization sensors (i.e., sensors to measure pitch, roll, and yaw, and systems including an inertial navigation system, a compass, a global positioning system, or an odometer) detect the position of the vehicle. Perception sensors (e.g., LIDAR, stereo vision, infrared vision, radar, or sonar) assess the environment about the vehicle. Using these sensors, locations of terrain features relative to the vehicle are computed and kept up-to-date. The vehicle trajectory is adjusted to avoid terrain features that are obstacles in the path of the vehicle.
    Type: Grant
    Filed: October 22, 2004
    Date of Patent: March 3, 2009
    Assignee: iRobot Corporation
    Inventors: Misha Filippov, James Allard, David S. Barrett, Robert Todd Pack, Selma Svendsen
  • Publication number: 20060089800
    Abstract: System and method for multi-modal control of a vehicle. Actuators (e.g., linkages) manipulate input devices (e.g., articulation controls and drive controls, such as a throttle, brake, accelerator, throttle lever, steering gear, tie rods, or transmission shifter) to direct the operation of the vehicle. Behaviors that characterize the operational mode of the vehicle are associated with the actuators. After receipt of a mode select command that dictates the operational mode of the vehicle (e.g., manned operation, remote unmanned tele-operation, assisted remote tele-operation, and autonomous unmanned operation), the actuators manipulate the operator input devices, in accordance with the behaviors, to affect the desired operational mode.
    Type: Application
    Filed: October 22, 2004
    Publication date: April 27, 2006
    Inventors: Selma Svendsen, James Allard, David Barrett, Misha Filippov, Robert Pack
  • Publication number: 20060089764
    Abstract: System and method for tracking obstacles by an autonomous vehicle. Localization sensors (i.e., sensors to measure pitch, roll, and yaw, and systems including an inertial navigation system, a compass, a global positioning system, or an odometer) detect the position of the vehicle. Perception sensors (e.g., LIDAR, stereo vision, infrared vision, radar, or sonar) assess the environment about the vehicle. Using these sensors, locations of terrain features relative to the vehicle are computed and kept up-to-date. The vehicle trajectory is adjusted to avoid terrain features that are obstacles in the path of the vehicle.
    Type: Application
    Filed: October 22, 2004
    Publication date: April 27, 2006
    Inventors: Misha Filippov, James Allard, David Barrett, Robert Pack, Selma Svendsen
  • Publication number: 20060089765
    Abstract: System and method for behavior based control of an autonomous vehicle. Actuators (e.g., linkages) manipulate input devices (e.g., articulation controls and drive controls, such as a throttle lever, steering gear, tie rods, throttle, brake, accelerator, or transmission shifter) to direct the operation of the vehicle. Behaviors that characterize the operational mode of the vehicle are associated with the actuators. The behaviors include action sets ranked by priority, and the action sets include alternative actions that the vehicle can take to accomplish its task. The alternative actions are ranked by preference, and an arbiter selects the action to be performed and, optionally, modified.
    Type: Application
    Filed: October 22, 2004
    Publication date: April 27, 2006
    Inventors: Robert Pack, James Allard, David Barrett, Misha Filippov, Selma Svendsen