Patents by Inventor Mishali Naik

Mishali Naik has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140281387
    Abstract: A processor is operable to process conditional branches. The processor includes instruction fetch logic to fetch a conditional short forward branch. The conditional short forward branch is to include a conditional branch instruction and a set of one or more instructions that are to sequentially follow the conditional branch instruction in program order. The set of the one or more instructions are between the conditional branch instruction and a forward branch target instruction that is to be indicated by the conditional branch instruction. The processor also includes instruction conversion logic coupled with the instruction fetch logic. The instruction conversion logic is to convert the conditional short forward branch to a computationally equivalent set of one or more predicated instructions. Other processors are also disclosed, as are various methods and systems.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Inventors: Edward Thomas Grochowski, Martin Dixon, Yazmin A. Santiago, Mishali Naik
  • Publication number: 20140189299
    Abstract: A heterogeneous processor architecture is described. For example, a processor according to one embodiment of the invention comprises: a set of large physical processor cores; a set of small physical processor cores having relatively lower performance processing capabilities and relatively lower power usage relative to the large physical processor cores; virtual-to-physical (V-P) mapping logic to expose the set of large physical processor cores to software through a corresponding set of virtual cores and to hide the set of small physical processor core from the software.
    Type: Application
    Filed: December 28, 2012
    Publication date: July 3, 2014
    Inventors: Paolo Narvaez, Ganapati N. Srinivasa, Eugene Gorbatov, Dheeraj R. Subbareddy, Mishali Naik, Alon Naveh, Abirami Prabhakaran, Eliezer Weissmann, David A. Koufaty, Paul Brett, Scott D. Hahn, Andrew J. Herdrich, Ravishankar Iyer, Nagabhushan Chitlur, Inder M. Sodhi, Gaurav Khanna, Russell J. Fenger
  • Publication number: 20140189301
    Abstract: A processor of an aspect includes at least one lower processing capability and lower power consumption physical compute element and at least one higher processing capability and higher power consumption physical compute element. Migration performance benefit evaluation logic is to evaluate a performance benefit of a migration of a workload from the at least one lower processing capability compute element to the at least one higher processing capability compute element, and to determine whether or not to allow the migration based on the evaluated performance benefit. Available energy and thermal budget evaluation logic is to evaluate available energy and thermal budgets and to determine to allow the migration if the migration fits within the available energy and thermal budgets. Workload migration logic is to perform the migration when allowed by both the migration performance benefit evaluation logic and the available energy and thermal budget evaluation logic.
    Type: Application
    Filed: December 28, 2012
    Publication date: July 3, 2014
    Inventors: Eugene Gorbatov, Alon Naveh, Inder M. Sodhi, Ganapati N. Srinivasa, Eliezer Weissmann, Guarav Khanna, Mishali Naik, Russell J. Fenger, Andrew D. Henroid, Dheeraj R. Subbareddy, David A. Koufaty, Paolo Narvaez
  • Publication number: 20140189297
    Abstract: A heterogeneous processor architecture is described. For example, a processor according to one embodiment of the invention comprises: a set of two or more small physical processor cores; at least one large physical processor core having relatively higher performance processing capabilities and relatively higher power usage relative to the small physical processor cores; virtual-to-physical (V-P) mapping logic to expose the set of two or more small physical processor cores to software through a corresponding set of virtual cores and to hide the at least one large physical processor core from the software.
    Type: Application
    Filed: December 28, 2012
    Publication date: July 3, 2014
    Inventors: Paolo Narvaez, Ganapati N. Srinivasa, Eugene Gorbatov, Dheeraj R. Subbareddy, Mishali Naik, Alon Naveh, Abirami Prabhakaran, Eliezer Weissmann, David A. Koufaty, Paul Brett, Scott D. Hahn, Andrew J. Herdrich, Gaurav Khanna, Russell J. Fenger, Bryant E. Bigbee, Andrew D. Henroid
  • Publication number: 20140189704
    Abstract: A heterogeneous processor architecture is described.
    Type: Application
    Filed: December 28, 2012
    Publication date: July 3, 2014
    Inventors: Paolo Narvaez, Ganapati N. Srinivasa, Eugene Gorbatov, Dheeraj R. Subbareddy, Mishali Naik, Alon Naveh, Abirami Prabhakaran, Eliezer Weissmann, David A. Koufaty, Paul Brett, Scott D. Hahn, Andrew J. Herdrich, Ravishankar Iyer, Nagabhushan Chitlur, Inder M. Sodhi, Gaurav Khanna, Russell J. Fenger
  • Publication number: 20140189302
    Abstract: A processor includes multiple physical cores that support multiple logical cores of different core types, where the core types include a big core type and a small core type. A multi-threaded application includes multiple software threads are concurrently executed by a first subset of logical cores in a first time slot. Based on data gathered from monitoring the execution in the first time slot, the processor selects a second subset of logical cores for concurrent execution of the software threads in a second time slot. Each logical core in the second subset has one of the core types that matches the characteristics of one of the software threads.
    Type: Application
    Filed: December 28, 2012
    Publication date: July 3, 2014
    Inventors: Dheeraj R. Subbareddy, Ganapati N. Srinivasa, David A. Koufaty, Scott D. Hahn, Mishali Naik, Paolo Narvaez, Abirami Prabhakaran, Eugene Gorbatov, Alon Naveh, Inder M. Sodhi, Eliezer Weissmann, Paul Brett, Gaurav Khanna, Russell J. Fenger
  • Publication number: 20140181830
    Abstract: According to one embodiment, a processor includes a plurality of processor cores for executing a plurality of threads, a shared storage communicatively coupled to the plurality of processor cores, a power control unit (PCU) communicatively coupled to the plurality of processors to determine, without any software (SW) intervention, if a thread being performed by a first processor core should be migrated to a second processor core, and a migration unit, in response to receiving an instruction from the PCU to migrate the thread, to store at least a portion of architectural state of the first processor core in the shared storage and to migrate the thread to the second processor core, without any SW intervention, such that the second processor core can continue executing the thread based on the architectural state from the shared storage without knowledge of the SW.
    Type: Application
    Filed: December 26, 2012
    Publication date: June 26, 2014
    Inventors: Mishali Naik, Ganapati N. Srinivasa, Alon Naveh, Inder M. Sodhi, Paolo Narvaez, Eugene Gorbatov, Eliezer Weissmann, Andrew D. Henroid, Andrew J. Herdrich, Guarav Khanna, Scott D. Hahn, Paul Brett, David A. Koufaty, Dheeraj R. Subbareddy, Abirami Prabhakaran
  • Patent number: 8270316
    Abstract: An on-chip Radio Frequency (RF) Interconnect (RF-I) for communication between internal circuit nodes of an integrated circuit is provided. In one embodiment, an integrated circuit is provided that includes an on-chip transmission line, a first circuit node associated with an RF transmitter connected to the transmission line, and a second circuit node associated with an RF receiver connected to the transmission line. In order to transmit data from the first circuit node to the second circuit node, the RF transmitter associated with the first circuit node modulates the data onto an RF carrier frequency to provide a modulated RF signal and transmits the modulated RF signal over the transmission line. The RF receiver associated with the second circuit node receives the modulated RF signal from the transmission line and demodulates the modulated RF signal to recover the data for the second circuit node.
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: September 18, 2012
    Assignee: The Regents of the University of California
    Inventors: Mau-Chung F. Chang, Jason Cong, Adam Kaplan, Mishali Naik, Glenn Reinman, Eran Socher, Sai-Wang Tam, Chunyue Liu