Patents by Inventor Mitchell Drew

Mitchell Drew has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11925631
    Abstract: The present disclosure relates generally to certain 6-azabenzimidazole compounds, pharmaceutical compositions comprising said compounds, and methods of making and using said compounds and pharmaceutical compositions. The compounds and compositions disclosed herein may be used for the treatment or prevention of diseases, disorders, or infections modifiable by hematopoietic progenitor kinase 1 (HPK1) inhibitors, such as HBV, HIV, cancer, and/or a hyper-proliferative disease.
    Type: Grant
    Filed: May 27, 2021
    Date of Patent: March 12, 2024
    Assignee: Gilead Sciences, Inc.
    Inventors: Gayatri Balan, Mark J. Bartlett, Jayaraman Chandrasekhar, Julian A. Codelli, John H. Conway, Jennifer L. Cosman, Rao V. Kalla, Musong Kim, Seung H. Lee, Jennifer R. Lo, Jennifer A. Loyer-Drew, Scott A. Mitchell, Thao D. Perry, Gary B. Phillips, Patrick J. Salvo, Joshua J. Van Veldhuizen, Suet C. Yeung, Jeff Zablocki
  • Publication number: 20220172972
    Abstract: A substrate processing apparatus including a frame, a first SCARA arm connected to the frame, including an end effector, configured to extend and retract along a first radial axis; a second SCARA arm connected to the frame, including an end effector, configured to extend and retract along a second radial axis, the SCARA arms having a common shoulder axis of rotation; and a drive section coupled to the SCARA arms is configured to independently extend each SCARA arm along a respective radial axis and rotate each SCARA arm about the common shoulder axis of rotation where the first radial axis is angled relative to the second radial axis and the end effector of a respective arm is aligned with a respective radial axis, wherein each end effector is configured to hold at least one substrate and the end effectors are located on a common transfer plane.
    Type: Application
    Filed: December 7, 2021
    Publication date: June 2, 2022
    Inventors: Robert T. CAVENEY, Jayaraman Krishnasamy, Ulysses Gilchrist, Mitchell Drew, Jairo Moura
  • Patent number: 11195738
    Abstract: A substrate processing apparatus including a frame, a first SCARA arm connected to the frame, including an end effector, configured to extend and retract along a first radial axis; a second SCARA arm connected to the frame, including an end effector, configured to extend and retract along a second radial axis, the SCARA arms having a common shoulder axis of rotation; and a drive section coupled to the SCARA arms is configured to independently extend each SCARA arm along a respective radial axis and rotate each SCARA arm about the common shoulder axis of rotation where the first radial axis is angled relative to the second radial axis and the end effector of a respective arm is aligned with a respective radial axis, wherein each end effector is configured to hold at least one substrate and the end effectors are located on a common transfer plane.
    Type: Grant
    Filed: March 20, 2020
    Date of Patent: December 7, 2021
    Assignee: Brooks Automation, Inc.
    Inventors: Robert T. Caveney, Jayaraman Krishnasamy, Ulysses Gilchrist, Mitchell Drew, Jairo Moura
  • Publication number: 20200321232
    Abstract: A substrate processing apparatus including a frame, a first SCARA arm connected to the frame, including an end effector, configured to extend and retract along a first radial axis; a second SCARA arm connected to the frame, including an end effector, configured to extend and retract along a second radial axis, the SCARA arms having a common shoulder axis of rotation; and a drive section coupled to the SCARA arms is configured to independently extend each SCARA arm along a respective radial axis and rotate each SCARA arm about the common shoulder axis of rotation where the first radial axis is angled relative to the second radial axis and the end effector of a respective arm is aligned with a respective radial axis, wherein each end effector is configured to hold at least one substrate and the end effectors are located on a common transfer plane.
    Type: Application
    Filed: March 20, 2020
    Publication date: October 8, 2020
    Inventors: Robert T. CAVENEY, Jayaraman KRISHNASAMY, Ulysses GILCHRIST, Mitchell DREW, Jairo MOURA
  • Patent number: 10600665
    Abstract: A substrate processing apparatus including a frame, a first SCARA arm connected to the frame, including an end effector, configured to extend and retract along a first radial axis; a second SCARA arm connected to the frame, including an end effector, configured to extend and retract along a second radial axis, the SCARA arms having a common shoulder axis of rotation; and a drive section coupled to the SCARA arms is configured to independently extend each SCARA arm along a respective radial axis and rotate each SCARA arm about the common shoulder axis of rotation where the first radial axis is angled relative to the second radial axis and the end effector of a respective arm is aligned with a respective radial axis, wherein each end effector is configured to hold at least one substrate and the end effectors are located on a common transfer plane.
    Type: Grant
    Filed: June 18, 2019
    Date of Patent: March 24, 2020
    Assignee: BROOKS AUTOMATION, INC.
    Inventors: Robert T. Caveney, Jayaraman Krishnasamy, Ulysses Gilchrist, Mitchell Drew, Jairo T. Moura
  • Publication number: 20190304823
    Abstract: A substrate processing apparatus including a frame, a first SCARA arm connected to the frame, including an end effector, configured to extend and retract along a first radial axis; a second SCARA arm connected to the frame, including an end effector, configured to extend and retract along a second radial axis, the SCARA arms having a common shoulder axis of rotation; and a drive section coupled to the SCARA arms is configured to independently extend each SCARA arm along a respective radial axis and rotate each SCARA arm about the common shoulder axis of rotation where the first radial axis is angled relative to the second radial axis and the end effector of a respective arm is aligned with a respective radial axis, wherein each end effector is configured to hold at least one substrate and the end effectors are located on a common transfer plane.
    Type: Application
    Filed: June 18, 2019
    Publication date: October 3, 2019
    Inventors: Robert T. CAVENEY, Jayaraman KRISHNASAMY, Ulysses GILCHRIST, Mitchell DREW, Jairo T. MOURA
  • Patent number: 10325795
    Abstract: A substrate processing apparatus including a frame, a first SCARA arm connected to the frame, including an end effector, configured to extend and retract along a first radial axis; a second SCARA arm connected to the frame, including an end effector, configured to extend and retract along a second radial axis, the SCARA arms having a common shoulder axis of rotation; and a drive section coupled to the SCARA arms is configured to independently extend each SCARA arm along a respective radial axis and rotate each SCARA arm about the common shoulder axis of rotation where the first radial axis is angled relative to the second radial axis and the end effector of a respective arm is aligned with a respective radial axis, wherein each end effector is configured to hold at least one substrate and the end effectors are located on a common transfer plane.
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: June 18, 2019
    Assignee: Brooks Automation, Inc.
    Inventors: Robert T. Caveney, Jayaraman Krishnasamy, Ulysses Gilchrist, Mitchell Drew, Jairo T. Moura
  • Publication number: 20180138066
    Abstract: A substrate processing apparatus including a frame, a first SCARA arm connected to the frame, including an end effector, configured to extend and retract along a first radial axis; a second SCARA arm connected to the frame, including an end effector, configured to extend and retract along a second radial axis, the SCARA arms having a common shoulder axis of rotation; and a drive section coupled to the SCARA arms is configured to independently extend each SCARA arm along a respective radial axis and rotate each SCARA arm about the common shoulder axis of rotation where the first radial axis is angled relative to the second radial axis and the end effector of a respective arm is aligned with a respective radial axis, wherein each end effector is configured to hold at least one substrate and the end effectors are located on a common transfer plane.
    Type: Application
    Filed: December 20, 2017
    Publication date: May 17, 2018
    Inventors: Robert T. CAVENEY, Jayaraman KRISHNASAMY, Ulysses GILCHRIST, Mitchell DREW, Jairo T. MOURA
  • Patent number: 9852935
    Abstract: A substrate processing apparatus including a frame, a first SCARA arm connected to the frame, including an end effector, configured to extend and retract along a first radial axis; a second SCARA arm connected to the frame, including an end effector, configured to extend and retract along a second radial axis, the SCARA arms having a common shoulder axis of rotation; and a drive section coupled to the SCARA arms is configured to independently extend each SCARA arm along a respective radial axis and rotate each SCARA arm about the common shoulder axis of rotation where the first radial axis is angled relative to the second radial axis and the end effector of a respective arm is aligned with a respective radial axis, wherein each end effector is configured to hold at least one substrate and the end effectors are located on a common transfer plane.
    Type: Grant
    Filed: January 5, 2016
    Date of Patent: December 26, 2017
    Assignee: Brooks Automation, Inc.
    Inventors: Robert T. Caveney, Jayaraman Krishnasamy, Ulysses Gilchrist, Mitchell Drew, Jairo T. Moura
  • Patent number: 9230841
    Abstract: A substrate processing apparatus including a frame, a first SCARA arm connected to the frame, including an end effector, configured to extend and retract along a first radial axis; a second SCARA arm connected to the frame, including an end effector, configured to extend and retract along a second radial axis, the SCARA arms having a common shoulder axis of rotation; and a drive section coupled to the SCARA arms is configured to independently extend each SCARA arm along a respective radial axis and rotate each SCARA arm about the common shoulder axis of rotation where the first radial axis is angled relative to the second radial axis and the end effector of a respective arm is aligned with a respective radial axis, wherein each end effector is configured to hold at least one substrate and the end effectors are located on a common transfer plane.
    Type: Grant
    Filed: December 22, 2014
    Date of Patent: January 5, 2016
    Assignee: Brooks Automation, Inc.
    Inventors: Ulysses Gilchrist, Robert T. Caveney, Jayaraman Krishnasamy, Mitchell Drew, Jairo T. Moura
  • Patent number: 9117859
    Abstract: A substrate processing apparatus including a chamber capable of holding an isolated atmosphere and having a front and rear disposed along a longitudinal axis and a transport apparatus located in the chamber, and having twin scara arms and a drive section with a coaxial drive shaft assembly, each shaft of which being operably connected to at least one rotatable link of both scara arms to move the twin scara arms, wherein movement of one of the twin scara arms mirrors movement of another of the twin scara arms across the longitudinal axis.
    Type: Grant
    Filed: August 31, 2007
    Date of Patent: August 25, 2015
    Assignee: Brooks Automation, Inc.
    Inventors: Alexander G. Krupyshev, Mitchell Drew
  • Publication number: 20150110584
    Abstract: A substrate processing apparatus including a frame, a first SCARA arm connected to the frame, including an end effector, configured to extend and retract along a first radial axis; a second SCARA arm connected to the frame, including an end effector, configured to extend and retract along a second radial axis, the SCARA arms having a common shoulder axis of rotation; and a drive section coupled to the SCARA arms is configured to independently extend each SCARA arm along a respective radial axis and rotate each SCARA arm about the common shoulder axis of rotation where the first radial axis is angled relative to the second radial axis and the end effector of a respective arm is aligned with a respective radial axis, wherein each end effector is configured to hold at least one substrate and the end effectors are located on a common transfer plane.
    Type: Application
    Filed: December 22, 2014
    Publication date: April 23, 2015
    Inventors: Ulysses Gilchrist, Robert T. Caveney, Jayaraman Krishnasamy, Mitchell Drew, Jairo T. Moura
  • Patent number: 8918203
    Abstract: A substrate processing apparatus including a frame, a first SCARA arm connected to the frame, including an end effector, configured to extend and retract along a first radial axis; a second SCARA arm connected to the frame, including an end effector, configured to extend and retract along a second radial axis, the SCARA arms having a common shoulder axis of rotation; and a drive section coupled to the SCARA arms is configured to independently extend each SCARA arm along a respective radial axis and rotate each SCARA arm about the common shoulder axis of rotation where the first radial axis is angled relative to the second radial axis and the end effector of a respective arm is aligned with a respective radial axis, wherein each end effector is configured to hold at least one substrate and the end effectors are located on a common transfer plane.
    Type: Grant
    Filed: March 12, 2012
    Date of Patent: December 23, 2014
    Assignee: Brooks Automation, Inc.
    Inventors: Ulysses Gilchrist, Robert T. Caveney, Jayaraman Krishnasamy, Mitchell Drew, Jairo T. Moura
  • Publication number: 20120232690
    Abstract: A substrate processing apparatus including a frame, a first SCARA arm connected to the frame, including an end effector, configured to extend and retract along a first radial axis; a second SCARA arm connected to the frame, including an end effector, configured to extend and retract along a second radial axis, the SCARA arms having a common shoulder axis of rotation; and a drive section coupled to the SCARA arms is configured to independently extend each SCARA arm along a respective radial axis and rotate each SCARA arm about the common shoulder axis of rotation where the first radial axis is angled relative to the second radial axis and the end effector of a respective arm is aligned with a respective radial axis, wherein each end effector is configured to hold at least one substrate and the end effectors are located on a common transfer plane.
    Type: Application
    Filed: March 12, 2012
    Publication date: September 13, 2012
    Applicant: Brooks Automation, Inc.
    Inventors: Ulysses Gilchrist, Robert T. Caveney, Jayaraman Krishnasamy, Mitchell Drew, Jairo T. Moura
  • Publication number: 20100168679
    Abstract: Disclosed is an ultra-low dose injection delivery system. The system includes a pistol grip having front and rear handles, a barrel containing an injectable fluid, and a bottle mount integrated with the barrel for receiving and securing a bottle holder, the bottle mount including a conduit running from a spike tip that punctures a bung of the bottle into the barrel. The system further includes a needle coupling attached to the barrel adapted to receive and secure a needle and a plunger for assisting in drawing an injectable fluid from a bottle into the barrel and for forcing the injectable fluid out of the barrel. A ratcheting mechanism incrementally advances a selectable ultra-low dose of injectable fluid out of the barrel upon a full stroke of the pistol grip. A full stroke is defined as advancing the plunger forward by squeezing the front and rear handles together until the ratcheting mechanism stops the plunger from further advancing yet still allows the front and rear handles to be fully squeezed.
    Type: Application
    Filed: December 29, 2009
    Publication date: July 1, 2010
    Inventors: Kimberly Quinn, Mitchell Drew Rivenbark, Williams O. Boone
  • Publication number: 20080056856
    Abstract: A substrate processing apparatus including a chamber capable of holding an isolated atmosphere and having a front and rear disposed along a longitudinal axis and a transport apparatus located in the chamber, and having twin scara arms and a drive section with a coaxial drive shaft assembly, each shaft of which being operably connected to at least one rotatable link of both scara arms to move the twin scara arms, wherein movement of one of the twin scara arms mirrors movement of another of the twin scara arms across the longitudinal axis.
    Type: Application
    Filed: August 31, 2007
    Publication date: March 6, 2008
    Applicant: Brooks Automation, Inc.
    Inventors: Alexander G. Krupyshev, Mitchell Drew
  • Patent number: 6719517
    Abstract: A substrate processing apparatus comprising a frame, at least one processing module, and a substrate transport apparatus. The frame defines a first chamber with outer substrate transport openings for transporting substrates between the first chamber and an exterior of the frame. The processing module is connected to the exterior of the frame. The processing module communicates with the first chamber of the frame through at least one of the outer openings. The substrate transport apparatus is connected to the frame for transporting substrates between the first chamber and the processing module exterior to the frame. The frame has a second integral chamber formed therein. The second integral chamber communicates with the first chamber through an internal substrate transport opening of the frame. The second integral chamber of the frame has a selectable configuration from a number of predetermined configurations.
    Type: Grant
    Filed: December 4, 2001
    Date of Patent: April 13, 2004
    Assignee: Brooks Automation
    Inventors: David R. Beaulieu, Douglas R. Adams, Mitchell Drew, Peter Van Der Meulen
  • Publication number: 20030103836
    Abstract: A substrate processing apparatus comprising a frame, at least one processing module, and a substrate transport apparatus. The frame defines a first chamber with outer substrate transport openings for transporting substrates between the first chamber and an exterior of the frame. The processing module is connected to the exterior of the frame. The processing module communicates with the first chamber of the frame through at least one of the outer openings. The substrate transport apparatus is connected to the frame for transporting substrates between the first chamber and the processing module exterior to the frame. The frame has a second integral chamber formed therein. The second integral chamber communicates with the first chamber through an internal substrate transport opening of the frame. The second integral chamber of the frame has a selectable configuration from a number of predetermined configurations.
    Type: Application
    Filed: December 4, 2001
    Publication date: June 5, 2003
    Inventors: David R. Beaulieu, Douglas R. Adams, Mitchell Drew, Peter Van Der Meulen
  • Patent number: 5664925
    Abstract: A system is provided for batch loading semiconductor wafers into a load lock from a portable carrier, for example, used for supporting and transporting a plurality of the wafers in spaced, stacked, relationship. The carrier is supported adjacent a chamber within the load lock. A multilevel end effector associated with the load lock chamber includes a plurality of spaced end effector sets, each set being adapted to support a wafer thereon and aligned with an associated wafer supported in the carrier. The plurality of wafers are engaged and simultaneously retrieved as a grouping, then held in the load lock chamber for subsequent transport, for example, one at a time, into an adjacent transport chamber for delivery to a specified one of a plurality of processing stations. A mini-environment may sealingly isolate the load lock chamber and the interior of the carrier from the surrounding atmosphere.
    Type: Grant
    Filed: January 27, 1997
    Date of Patent: September 9, 1997
    Assignee: Brooks Automation, Inc.
    Inventors: Richard S. Muka, Michael W. Pippins, Mitchell A. Drew
  • Patent number: 5613821
    Abstract: A system is provided for batch loading semiconductor wafers into a load lock from a portable carrier used for supporting a plurality of the wafers in spaced relationship and transporting them in a particle free environment. The carrier is supported adjacent a load lock chamber also having a particle free environment. A multilevel end effector associated with the load lock chamber includes a plurality of spaced end effector sets, each set being adapted to support a wafer thereon and aligned with an associated wafer supported in the carrier. The plurality of wafers are engaged and simultaneously retrieved as a grouping, then held in the load lock chamber for subsequent transport, one at a time, into an adjacent transport chamber for delivery to a specified one of a plurality of processing stations. A mini-environment sealingly isolates the load lock chamber and the interior of the carrier from the surrounding atmosphere.
    Type: Grant
    Filed: July 6, 1995
    Date of Patent: March 25, 1997
    Assignee: Brooks Automation, Inc.
    Inventors: Richard S. Muka, Michael W. Pippins, Mitchell A. Drew