Patents by Inventor Mitchell Goldfarb

Mitchell Goldfarb has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8748568
    Abstract: Isolated peptides are provided that are effective in inducing long-term inactivation of voltage-gated sodium channels (VGSCs) in mammalian cells. Such peptides are useful in reducing the action potentials of these excitable cells, for example, neurons, myocytes, and tonic muscle cells, in mammals in need thereof.
    Type: Grant
    Filed: May 6, 2010
    Date of Patent: June 10, 2014
    Assignee: Research Foundation of The City University of New York
    Inventors: Mitchell Goldfarb, Dover Katarzyna
  • Publication number: 20120244615
    Abstract: Isolated peptides are provided that are effective in inducing long-term inactivation of voltage-gated sodium channels (VGSCs) in mammalian cells. Such peptides are useful in reducing the action potentials of these excitable cells, for example, neurons, myocytes, and tonic muscle cells, in mammals in need thereof.
    Type: Application
    Filed: May 6, 2010
    Publication date: September 27, 2012
    Inventors: Mitchell Goldfarb, Dover Katarzyna
  • Patent number: 7645857
    Abstract: The present invention provides fragments of SNT and FGFR which can form a binding complex that is amenable to structural determinations by NMR spectroscopy. The three-dimensional structural data is also included as part of the invention. In addition, the present invention provides methodology for related structure based rational drug design using the three-dimensional data. Nucleotide and amino acid sequences of the fragments are also provided.
    Type: Grant
    Filed: July 18, 2005
    Date of Patent: January 12, 2010
    Assignee: Mount Sinai School of Medicine
    Inventors: Ming-Ming Zhou, Mitchell Goldfarb
  • Patent number: 7108984
    Abstract: The present invention provides fragments of SNT and FGFR which can form a binding complex that is amenable to structural determinations by NMR spectroscopy. The three-dimensional structural data is also included as part of the invention. In addition, the present invention provides methodology for related structure based rational drug design using the three-dimensional data. Nucleotide and amino acid sequences of the fragments are also provided.
    Type: Grant
    Filed: January 9, 2001
    Date of Patent: September 19, 2006
    Assignee: Mount Sinai School of Medicine
    Inventors: Ming-Ming Zhou, Mitchell Goldfarb
  • Patent number: 7063840
    Abstract: The present invention provides for an isolated nucleic acid molecule encoding a human TIE-2 ligand. In addition, the invention provides for a receptor body which specifically binds a human TIE-2 ligand. The invention also provides an antibody which specifically binds a human TIE-2 ligand. The invention further provides for an antagonist of human TIE-2. The invention also provides for therapeutic compositions as well as a method of blocking blood vessel growth, a method of promoting neovascularization, a method of promoting the growth or differentiation of a cell expressing the TIE-2 receptor, a method of blocking the growth or differentiation of a cell expressing the TIE-2 receptor and a method of attenuating or preventing tumor growth in a human.
    Type: Grant
    Filed: June 24, 2002
    Date of Patent: June 20, 2006
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventors: Samuel Davis, Joanne Bruno, Mitchell Goldfarb, Thomas H. Aldrich, Peter C. Maisonpierre, Czeslaw Radziejewski, Pamela F. Jones, George D. Yancopoulos
  • Publication number: 20060019296
    Abstract: The present invention provides fragments of SNT and FGFR which can form a binding complex that is amenable to structural determinations by NMR spectroscopy. The three-dimensional structural data is also included as part of the invention. In addition, the present invention provides methodology for related structure based rational drug design using the three-dimensional data. Nucleotide and amino acid sequences of the fragments are also provided.
    Type: Application
    Filed: July 18, 2005
    Publication date: January 26, 2006
    Inventors: Ming-Ming Zhou, Mitchell Goldfarb
  • Patent number: 6645484
    Abstract: The present invention provides for an isolated nucleic acid molecule encoding a human TIE-2 ligand. In addition, the invention provides for a receptor body which specifically binds a human TIE-2 ligand. The invention also provides an antibody which specifically binds a human TIE-2 ligand. The invention further provides for an antagonist of human TIE-2. The invention also provides for therapeutic compositions as well as a method of blocking blood vessel growth, a method of promoting neovascularization, a method of promoting the growth or differentiation of a cell expressing the TIE-2 receptor, a method of blocking the growth or differentiation of a cell expressing the TIE-2 receptor and a method of attenuating or preventing tumor growth in a human.
    Type: Grant
    Filed: October 12, 2000
    Date of Patent: November 11, 2003
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventors: Samuel Davis, JoAnne Bruno, Mitchell Goldfarb, Thomas H. Aldrich, Peter C. Maisonpierre, Czeslaw Radziejewski, Pamela F. Jones, George D. Yancopoulos
  • Publication number: 20030166857
    Abstract: The present invention provides for an isolated nucleic acid molecule encoding a human TIE-2 ligand. In addition, the invention provides for a receptor body which specifically binds a human TIE-2 ligand. The invention also provides an antibody which specifically binds a human TIE-2 ligand. The invention further provides for an antagonist of human TIE-2. The invention also provides for therapeutic compositions as well as a method of blocking blood vessel growth, a method of promoting neovascularization, a method of promoting the growth or differentiation of a cell expressing the TIE-2 receptor, a method of blocking the growth or differentiation of a cell expressing the TIE-2 receptor and a method of attenuating or preventing tumor growth in a human.
    Type: Application
    Filed: June 24, 2002
    Publication date: September 4, 2003
    Inventors: Samuel Davis, Joanne Bruno, Mitchell Goldfarb, Thomas H. Aldrich, Peter C. Maisonpierre, Czeslaw Radziejewski, Pamela F. Jones, George D. Yancopoulos
  • Publication number: 20030166858
    Abstract: The present invention provides for an isolated nucleic acid molecule encoding a human TIE-2 ligand. In addition, the invention provides for a receptor body which specifically binds a human TIE-2 ligand. The invention also provides an antibody which specifically binds a human TIE-2 ligand. The invention further provides for an antagonist of human TIE-2. The invention also provides for therapeutic compositions as well as a method of blocking blood vessel growth, a method of promoting neovascularization, a method of promoting the growth or differentiation of a cell expressing the TIE-2 receptor, a method of blocking the growth or differentiation of a cell expressing the TIE-2 receptor and a method of attenuating or preventing tumor growth in a human.
    Type: Application
    Filed: June 24, 2002
    Publication date: September 4, 2003
    Inventors: Samuel Davis, Joanne Bruno, Mitchell Goldfarb, Thomas H. Aldrich, Peter C. Maisonpierre, Czeslaw Radziejewski, Pamela F. Jones, George D. Yancopoulos
  • Publication number: 20030109677
    Abstract: The present invention provides for an isolated nucleic acid molecule encoding a human TIE-2 ligand. In addition, the invention provides for a receptor body which specifically binds a human TIE-2 ligand. The invention also provides an antibody which specifically binds a human TIE-2 ligand. The invention further provides for an antagonist of human TIE-2. The invention also provides for therapeutic compositions as well as a method of blocking blood vessel growth, a method of promoting neovascularization, a method of promoting the growth or differentiation of a cell expressing the TIE-2 receptor, a method of blocking the growth or differentiation of a cell expressing the TIE-2 receptor and a method of attenuating or preventing tumor growth in a human.
    Type: Application
    Filed: December 17, 2002
    Publication date: June 12, 2003
    Inventors: Samuel Davis, JoAnne Bruno, Mitchell Goldfarb, Thomas H. Aldrich, Peter C. Maisonpierre, Czeslaw Radziejewski, Pamela F. Jones, George D. Yancopoulos
  • Publication number: 20030040612
    Abstract: The present invention provides fragments of SNT and FGFR which can form a binding complex that is amenable to structural determinations by NMR spectroscopy. The three-dimensional structural data is also included as part of the invention. In addition, the present invention provides methodology for related structure based rational drug design using the three-dimensional data. Nucleotide and amino acid sequences of the fragments are also provided.
    Type: Application
    Filed: January 9, 2001
    Publication date: February 27, 2003
    Inventors: Ming-Ming Zhou, Mitchell Goldfarb
  • Publication number: 20020173627
    Abstract: The present invention provides for an isolated nucleic acid molecule encoding a human TIE-2 ligand. In addition, the invention provides for a receptor body which specifically binds a human TIE-2 ligand. The invention also provides an antibody which specifically binds a human TIE-2 ligand. The invention further provides for an antagonist of human TIE-2. The invention also provides for therapeutic compositions as well as a method of blocking blood vessel growth, a method of promoting neovascularization, a method of promoting the growth or differentiation of a cell expressing the TIE-2 receptor, a method of blocking the growth or differentiation of a cell expressing the TIE-2 receptor and a method of attenuating or preventing tumor growth in a human.
    Type: Application
    Filed: June 24, 2002
    Publication date: November 21, 2002
    Inventors: Samuel Davis, Joanne Bruno, Mitchell Goldfarb, Thomas H. Aldrich, Peter C. Maisonpierre, Czeslaw Radziejewski, Pamela F. Jones, George D. Yancopoulos
  • Patent number: 6433143
    Abstract: The present invention provides for an isolated nucleic acid molecule encoding a human TIE-2 ligand. In addition, the invention provides for a receptor body, which specifically binds a human TIE-2 ligand. The invention also provides an antibody that specifically binds a human TIE-2 ligand. The invention further provides for an antagonist of human TIE-2. The invention also provides for therapeutic compositions as well as a method of blocking blood vessel growth, a method of promoting neovascularization, a method of promoting the growth or differentiation of a cell expressing the TIE-2 receptor, a method of blocking the growth or differentiation of a cell expressing the TIE-2 receptor and a method of attenuating or preventing tumor growth in a human.
    Type: Grant
    Filed: September 16, 1999
    Date of Patent: August 13, 2002
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventors: Samuel Davis, Joanne Bruno, Mitchell Goldfarb, Thomas H. Aldrich, Peter C. Maisonpierre, Czeslaw Radziejewski, Pamela F. Jones, George D. Yancopoulos
  • Patent number: 6166185
    Abstract: The present invention provides for an isolated nucleic acid molecule encoding a human TIE-2 ligand. In addition, the invention provides for a receptor body which specifically binds a human TIE-2 ligand. The invention also provides an antibody which specifically binds a human TIE-2 ligand. The invention further provides for an antagonist of human TIE-2. The invention also provides for therapeutic compositions as well as a method of blocking blood vessel growth, a method of promoting neovascularization, a method of promoting the growth or differentiation of a cell expressing the TIE-2 receptor, a method of blocking the growth or differentiation of a cell expressing the TIE-2 receptor and a method of attenuating or preventing tumor growth in a human.
    Type: Grant
    Filed: September 28, 1998
    Date of Patent: December 26, 2000
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventors: Samuel Davis, JoAnne Bruno, Mitchell Goldfarb, Thomas H. Aldrich, Peter C. Maisonpierre, Czeslaw Radziejewski, Pamela F. Jones, George D. Yancopoulos
  • Patent number: 5747033
    Abstract: Novel ligands that bind Eph family receptors are identified, and methods for making the soluble ligands in biologically active form are described. cDNA clones encoding these novel proteins enable production of the recombinant proteins, which are useful to support neuronal and other receptor-bearing cell populations.
    Type: Grant
    Filed: September 1, 1994
    Date of Patent: May 5, 1998
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventors: Samuel Davis, Nicholas W. Gale, Thomas H. Aldrich, Peter C. Maisonpierre, Mitchell Goldfarb, George D. Yancopoulos
  • Patent number: 5238916
    Abstract: This invention provides a purified polypeptide having growth factor activity and a defined amino acid sequence. The invention also provides a purified nucleic acid molecule encoding the polypeptide. This invention further provides methods for producing the polypeptide as well as uses thereof. Finally, this invention provides methods for detecting the polypeptide.
    Type: Grant
    Filed: May 27, 1988
    Date of Patent: August 24, 1993
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: Mitchell Goldfarb, Xi Zhan
  • Patent number: 5155217
    Abstract: This invention provides a purified polypeptide having growth factor activity and a defined amino acid sequence. The invention also provides a purified nucleic acid molecule encoding the polypeptide. This invention further provides methods for producing the polypeptide as well as uses thereof. Finally, this invention provides methods for detecting the polypeptide.
    Type: Grant
    Filed: May 29, 1987
    Date of Patent: October 13, 1992
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: Mitchell Goldfarb, Xi Zhan