Patents by Inventor Mitchell Ho

Mitchell Ho has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12229165
    Abstract: A method is provided for identifying operating conditions of a system. Input data relating to operation of the system is applied to a multi-class model for classification, where the multi-class model is configured for classifying the data into one of a plurality of predefined classes, and each class corresponds to a respective operating condition of the system. A confidence level of the classification by the multi-class model is determined. If the confidence level is below a threshold confidence level, the input data is applied to a plurality of binary models, where each binary model is configured for determining whether the data is or is not in a respective one of the predefined classes. If the plurality of binary models determine that the data is not in any of the respective predefined classes, the data can be taken into consideration when updating the multi-class model.
    Type: Grant
    Filed: July 12, 2019
    Date of Patent: February 18, 2025
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Philipp Frank, Chin Lam Eng, Raul Martin Cuerdo, Mitchell Ho, Chee Wai Ng
  • Patent number: 12215164
    Abstract: Disclosed is a molecule comprising: (a) a first domain, which comprises a targeting moiety; (b) a second domain, which comprises an albumin binding domain (ABD), (c) a third domain, which comprises a furin cleavage sequence (“FCS”), which FCS is cleavable by furin; and (d) a fourth domain, which comprises an optionally substituted Domain III from Pseudomonas exotoxin A (“PE”). Related nucleic acids, recombinant expression vectors, host cells, populations of cells, pharmaceutical compositions, methods of producing the molecule, methods of treating or preventing cancer in a mammal, and methods of inhibiting the growth of a target cell are also disclosed.
    Type: Grant
    Filed: September 20, 2023
    Date of Patent: February 4, 2025
    Assignee: The United States of America, as represented by the Secretary, Department of Health and Human Services
    Inventors: Ira H. Pastan, Junxia Wei, Masanori Onda, Tapan Bera, Mitchell Ho
  • Publication number: 20250018040
    Abstract: Polypeptides, proteins, and chimeric antigen receptors (CARs) that specifically bind to human mesothelin582-598 (IP-NGYLVLDLSMQEALS) (SEQ ID NO: 1) are disclosed. Anti-mesothelin binding moieties, nucleic acids, recombinant expression vectors, host cells, populations of cells, pharmaceutical compositions, and conjugates relating to the poly peptides, proteins, and CARS are disclosed. Methods of reducing mesothelin shed from cell membranes, methods of detecting the presence of cancer, and methods of treating or preventing cancer are also disclosed.
    Type: Application
    Filed: December 16, 2022
    Publication date: January 16, 2025
    Applicant: The United States of America, as represented by the Secretary, Department of Health and Human Servic
    Inventors: Ira H. Pastan, Masanori Onda, Mitchell Ho, Xiu-fen Liu, Tapan Bera, Anirban Chakraborty
  • Publication number: 20250017962
    Abstract: Optimized chimeric antigen receptors (CARs) targeting glypican-3 (GPC3) and having a 12-amino acid hinge region derived from human IgG4 are described. The optimized CARs also include a transmembrane domain from either CD8 or CD28, an intracellular co-stimulatory domain and an intracellular signaling domain. Immune cells or induced pluripotent stem cells expressing the optimized CARs can be used to treat GPC3-positive solid tumors.
    Type: Application
    Filed: November 9, 2022
    Publication date: January 16, 2025
    Applicant: The U.S.A., as represented by the Secretary, Department of Health and Human Services
    Inventors: Mitchell Ho, Aarti Kolluri, Nan Li
  • Patent number: 12180296
    Abstract: Camel single-domain monoclonal antibodies that specifically bind human and mouse mesothelin are described. Chimeric antigen receptor (CAR) T cells and antibody conjugates based on the mesothelin-specific antibodies are also described. The disclosed CAR T cells, mesothelin-specific antibodies and conjugates thereof can be used, for example, in the diagnosis or treatment of mesothelin-positive cancers.
    Type: Grant
    Filed: January 2, 2020
    Date of Patent: December 31, 2024
    Assignee: The United States of America, as represented by the Secretary, Department of Health and Human Services
    Inventors: Mitchell Ho, Ira H. Pastan, Jessica D. Hong, Nan Li
  • Publication number: 20240417446
    Abstract: Single-domain monoclonal antibodies (“nanobodies”) that specifically bind the S2 subunit of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein are described. The single-domain antibodies were isolated from shark variable domain of new antigen receptor (VNAR) and camel variant domain of heavy chain only antibody (VHH) phage display libraries panned against the S2 subunit of SARS-CoV-2 spike protein. The S2 subunit-specific nanobodies, and conjugates thereof, can be used for the diagnosis and treatment of a coronavirus infection.
    Type: Application
    Filed: October 25, 2022
    Publication date: December 19, 2024
    Applicant: The U.S.A., as represented by the Secretary, Department of Health and Human Services
    Inventors: Mitchell Ho, Zhijian Duan, Jesse D. Buffington
  • Patent number: 12170908
    Abstract: A method 300 is disclosed for generating and training a model to detect interference conditions at a cell in a wireless cellular network and to classify the impact of detected interference conditions on performance of the wireless cellular network in the cell. The method comprises, for each of a plurality of cells in the wireless cellular network (360), obtaining data representing received signal power at a base station serving the cell over a period of time (310) and obtaining data representing a plurality of performance metrics for the cell over the time period (330). The method further comprises obtaining classifications of the received signal power data into one of a plurality of cell interference conditions (320) and the performance metric data into one of a plurality of cell impact classes (340).
    Type: Grant
    Filed: February 15, 2019
    Date of Patent: December 17, 2024
    Assignee: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL)
    Inventors: Chin Lam Eng, Philipp Frank, Raul Martin Cuerdo, Mitchell Ho, Chee Wai Ng
  • Patent number: 12122843
    Abstract: Monoclonal antibodies that specifically bind glypican-1 (GPC1) are described. Chimeric antigen receptor (CAR) T cells, immunotoxins and other antibody conjugates based on the GPC1-specific antibodies are also described. The disclosed CAR T cells, immunotoxins, GPC1-specific antibodies and conjugates thereof can be used, for example, in the diagnosis or treatment of GPC1-positive pancreatic cancer and other cancers.
    Type: Grant
    Filed: January 15, 2020
    Date of Patent: October 22, 2024
    Assignee: The United States of America, as represented by the Secretary, Department of Health and Human Services
    Inventors: Mitchell Ho, Nan Li, Jiajia Pan
  • Publication number: 20240301084
    Abstract: Monoclonal antibodies that bind glypican-2 (GPC2) with high affinity are described. Immunotoxins and chimeric antigen receptors (CARs) that include the disclosed antibodies or antigen-binding fragments thereof are further described. In some instances, the antibody or antigen-binding fragment is humanized. The disclosed GPC2-specific antibodies and conjugates can be used, for example, for the diagnosis or treatment of GPC2-positive cancers, including neuroblastoma, medulloblastoma and retinoblastoma.
    Type: Application
    Filed: May 13, 2024
    Publication date: September 12, 2024
    Applicant: The U.S.A., as represented by the Secretary, Department of Health and Human Services
    Inventors: Mitchell Ho, Nan Li, Bryan D. Fleming
  • Publication number: 20240270851
    Abstract: Single-domain shark variable new antigen receptor (VNAR) monoclonal antibodies that specifically bind programmed death-ligand 1 (PD-L1) are described. The PD-L1-specific VNAR antibodies are capable of binding PD-L1-expressing tumor cells from human, mouse and canine origin. Immune cells expressing chimeric antigen receptors (CARs) developed using the VNAR antibodies can be used to kill PD-L1-positive tumor cells, for example in animal models of liver cancer and breast cancer.
    Type: Application
    Filed: June 6, 2022
    Publication date: August 15, 2024
    Applicant: The U.S.A., as represented by the Secretary, Department of Health and Human Services
    Inventors: Mitchell Ho, Glenn Merlino, Dan Li, Hejiao English, Chi-Ping Day
  • Publication number: 20240228657
    Abstract: Disclosed is a molecule comprising: (a) a first domain, which comprises a targeting moiety; (b) a second domain, which comprises an albumin binding domain (ABD), (c) a third domain, which comprises a furin cleavage sequence (“FCS”), which FCS is cleavable by furin; and (d) a fourth domain, which comprises an optionally substituted Domain III from Pseudomonas exotoxin A (“PE”). Related nucleic acids, recombinant expression vectors, host cells, populations of cells, pharmaceutical compositions, methods of producing the molecule, methods of treating or preventing cancer in a mammal, and methods of inhibiting the growth of a target cell are also disclosed.
    Type: Application
    Filed: September 20, 2023
    Publication date: July 11, 2024
    Applicant: The United States of America,as represented by the Secretary,Department of Health and Human Services
    Inventors: Ira H. Pastan, Junxia Wei, Masanori Onda, Tapan Bera, Mitchell Ho
  • Publication number: 20240218055
    Abstract: Single-domain monoclonal antibodies that specifically bind Lassa virus glycoprotein (GPC) are described. The single-domain antibodies (“nanobodies”) were isolated from camel (VHH) and shark variable new antigen (VNAR) phage display libraries panned against a stabilized form of the GPC trimer. The GPC-specific nanobodies, and conjugates thereof, can be used for the diagnosis and treatment of a Lassa virus infection.
    Type: Application
    Filed: April 29, 2022
    Publication date: July 4, 2024
    Applicant: The U.S.A., as represented by the Secretary, Department of Health and Human Services
    Inventors: Mitchell Ho, Peter D. Kwong, Zhijian Duan, Yaping Sun, Sao-Fong Cheung, Jason J. Gorman
  • Patent number: 12012463
    Abstract: Monoclonal antibodies that bind glypican-2 (GPC2) with high affinity are described. Immunotoxins and chimeric antigen receptors (CARs) that include the disclosed antibodies or antigen-binding fragments thereof are further described. In some instances, the antibody or antigen-binding fragment is humanized. The disclosed GPC2-specific antibodies and conjugates can be used, for example, for the diagnosis or treatment of GPC2-positive cancers, including neuroblastoma, medulloblastoma and retinoblastoma.
    Type: Grant
    Filed: August 6, 2019
    Date of Patent: June 18, 2024
    Assignee: The United States of America, as represented by the Secretary, Department of Health and Human Services
    Inventors: Mitchell Ho, Nan Li, Bryan D. Fleming
  • Publication number: 20240132619
    Abstract: Disclosed is a molecule comprising: (a) a first domain, which comprises a targeting moiety; (b) a second domain, which comprises an albumin binding domain (ABD), (c) a third domain, which comprises a furin cleavage sequence (“FCS”), which FCS is cleavable by furin; and (d) a fourth domain, which comprises an optionally substituted Domain III from Pseudomonas exotoxin A (“PE”). Related nucleic acids, recombinant expression vectors, host cells, populations of cells, pharmaceutical compositions, methods of producing the molecule, methods of treating or preventing cancer in a mammal, and methods of inhibiting the growth of a target cell are also disclosed.
    Type: Application
    Filed: September 19, 2023
    Publication date: April 25, 2024
    Applicant: The United States of America,as represented by the Secretary,Department of Health and Human Services
    Inventors: Ira H. Pastan, Junxia Wei, Masanori Onda, Tapan Bera, Mitchell Ho
  • Publication number: 20230406953
    Abstract: Nucleic acid constructs encoding a chimeric antigen receptor (CAR) and a truncated human epidermal growth factor receptor (huEGFRt) are described. The encoded CARs include a tumor antigen-specific monoclonal antibody, such as a glypican-3 (GPC3)-specific, a GPC2-specific or a mesothelin-specific monoclonal antibody, fused to a CD8? hinge region, a CD8? transmembrane region, a 4-1BB co-stimulatory domain and a CD3? signaling domain. Isolated host cells, such as isolated T cells that co-express the disclosed CARs and huEGFRt are also described. T cells transduced with the disclosed CAR constructs can be used for cancer immunotherapy.
    Type: Application
    Filed: July 26, 2023
    Publication date: December 21, 2023
    Applicant: The U.S.A., as represented by the Secretary, Department of Health and Human Services
    Inventors: Mitchell Ho, Nan Li, Dan Li
  • Publication number: 20230391852
    Abstract: Polypeptides that specifically bind the spike (S) protein of human coronavirus, selected from six camel VHH single domain antibody phage display libraries, are described. The S protein-specific polypeptides disrupt binding of the SARS-CoV-2 and/or SARS-CoV S protein to the cellular receptor ACE2, which is important for neutralization of the virus. Use of the S protein-specific polypeptides for the diagnosis and treatment of SARS-CoV-2 and/or SARS-CoV is described.
    Type: Application
    Filed: October 26, 2021
    Publication date: December 7, 2023
    Applicant: The U.S.A., as Represented by the Secretary, Department of Health and Human Services
    Inventors: Mitchell Ho, Jessica Diana Hong
  • Patent number: 11802163
    Abstract: Nucleic acid constructs encoding a chimeric antigen receptor (CAR) and a truncated human epidermal growth factor receptor (huEGFRt) are described. The encoded CARs include a tumor antigen-specific monoclonal antibody, such as a glypican-3 (GPC3)-specific, a GPC2-specific or a mesothelin-specific monoclonal antibody, fused to a CD8? hinge region, a CD8? transmembrane region, a 4-1BB co-stimulatory domain and a CD3? signaling domain. Isolated host cells, such as isolated T cells that co-express the disclosed CARs and huEGFRt are also described. T cells transduced with the disclosed CAR constructs can be used for cancer immunotherapy.
    Type: Grant
    Filed: November 7, 2018
    Date of Patent: October 31, 2023
    Assignee: The U.S.A., as represented by the Secretary, Department of Health and Human Services
    Inventors: Mitchell Ho, Nan Li, Dan Li
  • Publication number: 20230340146
    Abstract: Optimized chimeric antigen receptors (CARs) targeting glypican-1 (GPC1) that include a 12-amino acid hinge region from IgG4 are described. The optimized CARs include a transmembrane domain from either CD8 or CD28. Immune cells, such as T cells or natural killer cells, expressing the optimized CARs can be used to treat GPC1-positive solid tumors.
    Type: Application
    Filed: August 10, 2021
    Publication date: October 26, 2023
    Applicant: The U.S.A., as represented by the Secretary, Department of Health and Human Services
    Inventors: Mitchell Ho, Nan Li, Jessica Diana Hong
  • Patent number: 11795235
    Abstract: Disclosed is a molecule comprising: (a) a first domain, which comprises a targeting moiety; (b) a second domain, which comprises an albumin binding domain (ABD), (c) a third domain, which comprises a furin cleavage sequence (“FCS”), which FCS is cleavable by furin; and (d) a fourth domain, which comprises an optionally substituted Domain III from Pseudomonas exotoxin A (“PE”). Related nucleic acids, recombinant expression vectors, host cells, populations of cells, pharmaceutical compositions, methods of producing the molecule, methods of treating or preventing cancer in a mammal, and methods of inhibiting the growth of a target cell are also disclosed.
    Type: Grant
    Filed: September 18, 2018
    Date of Patent: October 24, 2023
    Assignee: The United States of America, as represented by the Secretary, Department of Health and Human Services
    Inventors: Ira H. Pastan, Junxia Wei, Masanori Onda, Tapan Bera, Mitchell Ho
  • Publication number: 20230075810
    Abstract: The invention refers to a method performed by a performance recommender for a wireless network, obtaining (2010) for a plurality of cells input data, the input data comprising actual cell configuration parameter values; applying (2030) a machine-learning model to the input data to generate, for at least a portion of the cells, one or more recommendations for changes to the cell configuration parameter values to improve uplink, UL, performance in the respective cells; and based on identifying conflicts between recommendations for different cells, partitioning (2040) the plurality of cells into a plurality of interaction areas of neighboring cells; resolving (2050) conflicts in recommendations for respective cells within each of the interaction areas and across different interaction areas; and for at least a portion of the cells, determining (2060) preferred values for the cell configuration parameters to improve UL performance in the respective cells; the invention further relates to a corresponding performanc
    Type: Application
    Filed: February 24, 2021
    Publication date: March 9, 2023
    Inventors: Mitchell Ho, Philipp Frank, Chin Lam Eng, Jaime Rodriguez Membrive, Bhavika Reddy Jalli