Patents by Inventor Mitchell J. Mooney

Mitchell J. Mooney has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9349767
    Abstract: An imaging system may include an image sensor die stacked on top of a digital signal processor (DSP) die. The image sensor die may be a backside illuminated image sensor die. Through-oxide vias (TOVs) may be formed in the image sensor die and may extend at least partially into in the DSP die to facilitate communications between the image sensor die and the DSP die. Color filter housing structures may be formed over active image sensor pixels on the image sensor die. In-pixel grid structures may be integrated with the color filter housing structures to help reduce crosstalk. Light shielding structures may be formed over reference image sensor pixels on the image sensor die. The TOVs, the in-pixel grid structures, and the light shielding structures may be formed simultaneously. The formation of the color filter housing structures may also be integrated the formation of the TOVs.
    Type: Grant
    Filed: April 16, 2014
    Date of Patent: May 24, 2016
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Swarnal Borthakur, Marc Sulfridge, Mitchell J. Mooney
  • Patent number: 9324755
    Abstract: An imaging system may include an image sensor die stacked on top of a digital signal processor (DSP) die. The image sensor die may be a backside illuminated image sensor die. Through-oxide vias (TOVs) may be formed in the image sensor die and may extend at least partially into in the DSP die to facilitate communications between the image sensor die and the DSP die. Bond pad structures may be formed on the surface of the image sensor die and may be coupled to off-chip circuitry via bonding wires soldered to the bad pad structures. Color filter elements may be formed over active image sensor pixels on the image sensor die. Microlens structures may be formed over the color filter elements. An antireflective coating (ARC) liner may be simultaneously formed over the microlens structures and over the bond pad structures to passivate the bond pad structures.
    Type: Grant
    Filed: May 5, 2014
    Date of Patent: April 26, 2016
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Swarnal Borthakur, Marc Sulfridge, Mitchell J. Mooney
  • Patent number: 9293495
    Abstract: An image sensor wafer may be stacked on top of a digital signal processor (DSP) wafer. The image sensor wafer may include multiple image sensor dies, whereas the DSP wafer may include multiple DSP dies. The stacked wafers may be cut along scribe line regions to dice the wafers into individual components. Each image sensor die may include through-oxide vias (TOVs) that extend at least partially into a corresponding DSP die. Scribe line support structures may be formed surrounding the scribe line regions. The scribe line support structures and the TOVs may be formed during the same processing step. The TOVs can also be formed through deep trench isolation structures.
    Type: Grant
    Filed: May 5, 2014
    Date of Patent: March 22, 2016
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Swarnal Borthakur, Marc Sulfridge, Mitchell J. Mooney
  • Publication number: 20150318323
    Abstract: An imaging system may include an image sensor die stacked on top of a digital signal processor (DSP) die. The image sensor die may be a backside illuminated image sensor die. Through-oxide vias (TOVs) may be formed in the image sensor die and may extend at least partially into in the DSP die to facilitate communications between the image sensor die and the DSP die. Bond pad structures may be formed on the surface of the image sensor die and may be coupled to off-chip circuitry via bonding wires soldered to the bad pad structures. Color filter elements may be formed over active image sensor pixels on the image sensor die. Microlens structures may be formed over the color filter elements. An antireflective coating (ARC) liner may be simultaneously formed over the microlens structures and over the bond pad structures to passivate the bond pad structures.
    Type: Application
    Filed: May 5, 2014
    Publication date: November 5, 2015
    Inventors: Swarnal Borthakur, Marc Sulfridge, Mitchell J. Mooney
  • Publication number: 20150318322
    Abstract: An image sensor wafer may be stacked on top of a digital signal processor (DSP) wafer. The image sensor wafer may include multiple image sensor dies, whereas the DSP wafer may include multiple DSP dies. The stacked wafers may be cut along scribe line regions to dice the wafers into individual components. Each image sensor die may include through-oxide vias (TOVs) that extend at least partially into a corresponding DSP die. Scribe line support structures may be formed surrounding the scribe line regions. The scribe line support structures and the TOVs may be formed during the same processing step. The TOVs can also be formed through deep trench isolation structures.
    Type: Application
    Filed: May 5, 2014
    Publication date: November 5, 2015
    Inventors: Swarnal Borthakur, Marc Sulfridge, Mitchell J. Mooney
  • Publication number: 20150303233
    Abstract: An imaging system may include an image sensor die stacked on top of a digital signal processor (DSP) die. The image sensor die may be a backside illuminated image sensor die. Through-oxide vias (TOVs) may be formed in the image sensor die and may extend at least partially into in the DSP die to facilitate communications between the image sensor die and the DSP die. Color filter housing structures may be formed over active image sensor pixels on the image sensor die. In-pixel grid structures may be integrated with the color filter housing structures to help reduce crosstalk. Light shielding structures may be formed over reference image sensor pixels on the image sensor die. The TOVs, the in-pixel grid structures, and the light shielding structures may be formed simultaneously. The formation of the color filter housing structures may also be integrated the formation of the TOVs.
    Type: Application
    Filed: April 16, 2014
    Publication date: October 22, 2015
    Inventors: Swarnal Borthakur, Marc Sulfridge, Mitchell J. Mooney
  • Patent number: 9093579
    Abstract: Pixel arrays are provided for image sensors that have barriers between color filters in an array of color filters. Color filter barriers may be formed from a transparent or semi-transparent material. Color filter barriers may be formed from a low refractive index material. Color filters may be etched and color filter barrier material may be formed in the etched regions of the color filters. If desired, a layer of color filter barrier material may be etched to form open regions and color filter material may be formed in the open regions of the color filter barrier material. An image sensor may be a front-side illuminated image sensor or a back-side illuminated image sensor.
    Type: Grant
    Filed: November 11, 2011
    Date of Patent: July 28, 2015
    Assignee: Semiconductor Components Industries, LLC
    Inventors: Jeffrey Mackey, Ulrich Boettiger, Mattia Cichocki, Loriston Ford, Rick Holscher, Mitchell J. Mooney, Brian Vaartstra
  • Publication number: 20150146054
    Abstract: An image sensor may be provided with an array of imaging pixels. A color filter array may be formed over photosensitive elements in the pixel array. The color filter array may include color filter elements of different sizes. The color filter array may include color filter elements of at least three different sizes. The color filter array may include color filter elements of only two different sizes. Each color filter element by be square, octagonal, or rectangular. Microlenses of different sizes may also be formed on top of the color filter elements of different sizes. Forming color filter elements with different sizes may help skew the quantum efficiency for light at particular wavelengths of interest so that smaller pixel sizes can be used without suffering from diffraction limits.
    Type: Application
    Filed: November 27, 2013
    Publication date: May 28, 2015
    Applicant: Aptina Imaging Corporation
    Inventors: Brian Vaartstra, Mitchell J. Mooney, Stanley Micinski
  • Publication number: 20120273906
    Abstract: Pixel arrays are provided for image sensors that have barriers between color filters in an array of color filters. Color filter barriers may be formed from a transparent or semi-transparent material. Color filter barriers may be formed from a low refractive index material. Color filters may be etched and color filter barrier material may be formed in the etched regions of the color filters. If desired, a layer of color filter barrier material may be etched to form open regions and color filter material may be formed in the open regions of the color filter barrier material. An image sensor may be a front-side illuminated image sensor or a back-side illuminated image sensor.
    Type: Application
    Filed: November 11, 2011
    Publication date: November 1, 2012
    Inventors: Jeffrey Mackey, Ulrich Boettiger, Mattia Cichocki, Loriston Ford, Rick Holscher, Mitchell J. Mooney, Brian Vaartstra