Patents by Inventor Mitchell Kline

Mitchell Kline has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240004061
    Abstract: A device comprises a processor communicatively coupled with an ultrasonic sensor which is configured to repeatedly emit ultrasonic pulses during transmit periods which are interspersed with receive periods. Returned ultrasonic signals corresponding to the emitted ultrasonic pulses are received by the ultrasonic sensor during the receive periods. The processor is configured to direct the ultrasonic sensor to listen, during a listening window, for a potentially interfering ultrasonic signal from a second ultrasonic sensor. The listening window is prior to a transmit period of the transmit periods. In response to detecting the potentially interfering ultrasonic signal during the listening window, the processor is configured to adjust operation of the ultrasonic sensor to avoid an ultrasonic collision with the second ultrasonic sensor to facilitate coexistence of the ultrasonic sensor and the second ultrasonic sensor in an operating environment shared by the ultrasonic sensor and the second ultrasonic sensor.
    Type: Application
    Filed: June 29, 2023
    Publication date: January 4, 2024
    Applicant: InvenSense, Inc.
    Inventors: Joe Youssef, Mitchell Kline, Richard J. Przybyla
  • Publication number: 20230417907
    Abstract: A device comprises a processor coupled with an ultrasonic transducer which is configured to repeatedly emit ultrasonic pulses during transmit periods which are interspersed with listening windows. Each sequential pair of the transmit periods is separated by a single listening window of the listening windows. During a fixed portion of a listening window of the listening windows the ultrasonic transducer is configured to receive returned signals corresponding to an emitted ultrasonic pulse of the ultrasonic pulses which was transmitted during a transmit period of the transmit periods that immediately preceded the listening window. The processor randomizes an overall length of each listening window of the listening windows. The processor directs filtering of returned signals received during a plurality of the randomized listening windows to achieve filtered returned signals. The processor detects, using the filtered returned signals, a moving object in a field of view of the ultrasonic transducer.
    Type: Application
    Filed: June 9, 2023
    Publication date: December 28, 2023
    Applicant: InvenSense, Inc.
    Inventors: Daniela Hall, Mitchell Kline, Joe Youssef
  • Patent number: 11819879
    Abstract: An ultrasonic transceiver system includes a transmitter block, a receiver block, a state machine, and a computing unit. The transmitter block contains circuitry configured to drive an ultrasound transducer. The receiver block contains circuitry configured to receive signals from the ultrasound transducer and convert the signals into digital data. The state machine is coupled to the transmitter and receiver blocks and contains circuitry configured to act as a controller for those blocks. The computing unit is coupled to the transmitter block, the receiver block, and the state machine and is configured to drive the transmitter block and process data received from the receiver block by executing instructions of a program. The program memory is coupled to the computing unit and is configured to store the program. The computing unit is configured to be reprogrammed with one or more additional programs stored in the program memory.
    Type: Grant
    Filed: June 27, 2022
    Date of Patent: November 21, 2023
    Assignee: InvenSense, Inc.
    Inventors: Richard Przybyla, Mitchell Kline, David Horsley
  • Patent number: 11486961
    Abstract: Methods and systems are disclosed for determining pose information for at least one of a transmitter and receiver, both of which comprise ultrasonic transducers. A relative position is determined between the transmitter and the receiver and an orientation for at least is also determined. After obtaining field of view data for at least one of the transmitter and receiver, a field of view between them is determined, based at least in part on the field of view data, the determined relative position and the determined orientation. The pose information is then determined by weighting measurements of an ultrasonic signal emitted by the transmitter and received by the receiver based at least in part on the determined field of view relationship.
    Type: Grant
    Filed: June 14, 2019
    Date of Patent: November 1, 2022
    Inventors: Richard Przybyla, Mitchell Kline
  • Publication number: 20220331837
    Abstract: An ultrasonic transceiver system includes a transmitter block, a receiver block, a state machine, a computer unit. The transmitter block contains circuitry configured to drive an ultrasound transducer. The receiver block contains circuitry configured to receive signals from the ultrasound transducer and convert the signals into digital data. The state machine is coupled to the transmitter and receiver blocks and contains circuitry configured to act as a controller for those blocks. The computing unit is coupled to the transmitter block, the receiver block, and the state machine and is configured to drive the transmitter block and process data received from the receiver block by executing instructions of a program. The program memory is coupled to the computing unit and is configured to store the program. The computing unit is configured to be reprogrammed with one or more additional programs stored in the program memory.
    Type: Application
    Filed: June 27, 2022
    Publication date: October 20, 2022
    Applicant: INVENSENSE, INC.
    Inventors: Richard PRYZBYLA, Mitchell Kline, David Horsley
  • Publication number: 20220316938
    Abstract: Systems and methods for ultrasonic liquid level sensing. A circuit causes an ultrasonic transducer to transmit a sequence of ultrasonic pulses and receive a sequence of reflected signals. Each reflected signal includes at least one first reflection associated with at least one non-moveable surface and at least one second reflection associated with a moveable surface. A digital controller, for each reflected signal: determines at least one of a magnitude and a variance of the respective signal to form at least one output signal, identifies, in the at least one output signal, at least one first pulse indicative of the at least one non-moveable surface and at least one second pulse indicative of the moveable surface, and determines a distance of the moveable surface relative to the at least one non-moveable surface based on the identified first and second pulses.
    Type: Application
    Filed: March 29, 2022
    Publication date: October 6, 2022
    Inventors: Cristabel Yang, Richard J. Przybyla, Mitchell Kline
  • Patent number: 11440050
    Abstract: An ultrasonic transceiver system includes a transmitter block, a receiver block, a state machine, a computer unit. The transmitter block contains circuitry configured to drive an ultrasound transducer. The receiver block contains circuitry configured to receive signals from the ultrasound transducer and convert the signals into digital data. The state machine is coupled to the transmitter and receiver blocks and contains circuitry configured to act as a controller for those blocks. The computing unit is coupled to the transmitter block, the receiver block, and the state machine and is configured to drive the transmitter block and process data received from the receiver block by executing instructions of a program. The program memory is coupled to the computing unit and is configured to store the program. The computing unit is configured to be reprogrammed with one or more additional programs stored in the program memory.
    Type: Grant
    Filed: June 22, 2020
    Date of Patent: September 13, 2022
    Assignee: InvenSense, Inc.
    Inventors: Richard Przybyla, Mitchell Kline, David Horsley
  • Patent number: 11209533
    Abstract: An ultrasonic transmitter system includes a digital controller, bandpass pulse-width modulator (BP-PWM) unit, a digital to analog converter (DAC), and an ultrasound transducer. The controller generates pulse width and phase reference signals. The BP-PWM configured receives these signals generates a pulse width modulation (PWM) output characterized by a pulse width and a phase based on the pulse width and phase reference signals. The DAC) receives the PWM output from the BP-PWM unit and generates an output characterized by the pulse width and phase. The ultrasonic transducer receives the output from the DAC and generates an output sound pressure in response to the output from the DAC. An amplitude of the RMS sound pressure depends on the pulse width of the output from the DAC.
    Type: Grant
    Filed: April 20, 2018
    Date of Patent: December 28, 2021
    Assignee: CHIRP MICROSYSTEMS, INC.
    Inventors: Mitchell Kline, Richard Przybyla, David Horsley
  • Patent number: 10944320
    Abstract: An ultrasound transducer may be driven by a driver circuit having one or more charge pumps and a multi-level inverter. The one or more charge pumps are configured to drive the ultrasound transducer only during output transitions of the inverter.
    Type: Grant
    Filed: April 20, 2018
    Date of Patent: March 9, 2021
    Assignee: CHIRP MICROSYSTEMS, INC.
    Inventors: Mitchell Kline, Richard Przybyla, David Horsley
  • Publication number: 20200393534
    Abstract: Methods and systems are disclosed for determining pose information for at least one of a transmitter and receiver, both of which comprise ultrasonic transducers. A relative position is determined between the transmitter and the receiver and an orientation for at least is also determined. After obtaining field of view data for at least one of the transmitter and receiver, a field of view between them is determined, based at least in part on the field of view data, the determined relative position and the determined orientation. The pose information is then determined by weighting measurements of an ultrasonic signal emitted by the transmitter and received by the receiver based at least in part on the determined field of view relationship.
    Type: Application
    Filed: June 14, 2019
    Publication date: December 17, 2020
    Inventors: Richard Przbyla, Mitchell Kline
  • Publication number: 20200328821
    Abstract: An ultrasonic transceiver system includes a transmitter block, a receiver block, a state machine, a computer unit. The transmitter block contains circuitry configured to drive an ultrasound transducer. The receiver block contains circuitry configured to receive signals from the ultrasound transducer and convert the signals into digital data. The state machine is coupled to the transmitter and receiver blocks and contains circuitry configured to act as a controller for those blocks. The computing unit is coupled to the transmitter block, the receiver block, and the state machine and is configured to drive the transmitter block and process data received from the receiver block by executing instructions of a program. The program memory is coupled to the computing unit and is configured to store the program. The computing unit is configured to be reprogrammed with one or more additional programs stored in the program memory.
    Type: Application
    Filed: June 22, 2020
    Publication date: October 15, 2020
    Inventors: Richard Przybyla, Mitchell Kline, David Horsley
  • Patent number: 10712444
    Abstract: An ultrasonic input includes two or more ultrasonic transceiver units having transducers separated from each other by a predetermined spacing and a processor coupled to the transceiver units. In some implementations one unit transmits while two receive and in other implementations one unit transmits and receives while the other just receives. The transmitter sends an ultrasonic pulse and first and second receivers receive echoes of the ultrasonic pulse from an object. The processor and/or transceiver units use first and second receive signals to determine first and second time-of-flight (ToF) measurements corresponding to times between transmitting an ultrasonic pulse and receiving an echo of the ultrasonic pulse.
    Type: Grant
    Filed: October 19, 2018
    Date of Patent: July 14, 2020
    Assignee: Chirp Microsystems, Inc.
    Inventors: Mitchell Kline, David Horsley, Richard J. Przybyla
  • Patent number: 10700792
    Abstract: An ultrasonic transceiver system includes a transmitter block, a receiver block, a state machine, a computer unit. The transmitter block contains circuitry configured to drive an ultrasound transducer. The receiver block contains circuitry configured to receive signals from the ultrasound transducer and convert the signals into digital data. The state machine is coupled to the transmitter and receiver blocks and contains circuitry configured to act as a controller for those blocks. The computing unit is coupled to the transmitter block, the receiver block, and the state machine and is configured to drive the transmitter block and process data received from the receiver block by executing instructions of a program. The program memory is coupled to the computing unit and is configured to store the program. The computing unit is configured to be reprogrammed with one or more additional programs stored in the program memory.
    Type: Grant
    Filed: March 13, 2018
    Date of Patent: June 30, 2020
    Assignee: CHIRP MICROSYSTEMS, INC.
    Inventors: Richard Przybyla, Mitchell Kline, David Horsley
  • Publication number: 20190089468
    Abstract: An ultrasonic transceiver system includes a transmitter block, a receiver block, a state machine, a computer unit. The transmitter block contains circuitry configured to drive an ultrasound transducer. The receiver block contains circuitry configured to receive signals from the ultrasound transducer and convert the signals into digital data. The state machine is coupled to the transmitter and receiver blocks and contains circuitry configured to act as a controller for those blocks. The computing unit is coupled to the transmitter block, the receiver block, and the state machine and is configured to drive the transmitter block and process data received from the receiver block by executing instructions of a program. The program memory is coupled to the computing unit and is configured to store the program. The computing unit is configured to be reprogrammed with one or more additional programs stored in the program memory.
    Type: Application
    Filed: March 13, 2018
    Publication date: March 21, 2019
    Inventors: Richard Przybyla, Mitchell Kline, David Horsley
  • Publication number: 20180246193
    Abstract: An ultrasonic transmitter system includes a digital controller, bandpass pulse-width modulator (BP-PWM) unit, a digital to analog converter (DAC), and an ultrasound transducer. The controller generates pulse width and phase reference signals. The BP-PWM configured receives these signals generates a pulse width modulation (PWM) output characterized by a pulse width and a phase based on the pulse width and phase reference signals. The DAC) receives the PWM output from the BP-PWM unit and generates an output characterized by the pulse width and phase. The ultrasonic transducer receives the output from the DAC and generates an output sound pressure in response to the output from the DAC. An amplitude of the RMS sound pressure depends on the pulse width of the output from the DAC.
    Type: Application
    Filed: April 20, 2018
    Publication date: August 30, 2018
    Applicant: Chirp Microsystems, Inc.
    Inventors: Mitchell Kline, Richard Przybyla, David Horsley
  • Publication number: 20180248477
    Abstract: An ultrasound transducer may be driven by a driver circuit having one or more charge pumps and a multi-level inverter. The one or more charge pumps are configured to drive the ultrasound transducer only during output transitions of the inverter.
    Type: Application
    Filed: April 20, 2018
    Publication date: August 30, 2018
    Applicant: Chirp Microsystems, Inc.
    Inventors: Mitchell Kline, Richard Przybyla, David Horsley
  • Patent number: 9295116
    Abstract: A switched-capacitor voltage converter which is particularly well-suited for receiving a line voltage from which to drive current through a series of light emitting diodes (LEDs). Input voltage is rectified in a multi-level rectifier network having switched capacitors in an ascending-bank configuration for passing voltages in uniform steps between zero volts up to full received voltage VDC. A regulator section, operating on VDC, comprises switched-capacitor stages of H-bridge switching and flying capacitors. A current controlled oscillator drives the states of the switched-capacitor stages and changes its frequency to maintain a constant current to the load. Embodiments are described for isolating the load from the mains, utilizing an LC tank circuit or a multi-primary-winding transformer.
    Type: Grant
    Filed: June 2, 2014
    Date of Patent: March 22, 2016
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Seth R. Sanders, Mitchell Kline
  • Publication number: 20140346962
    Abstract: A switched-capacitor voltage converter which is particularly well-suited for receiving a line voltage from which to drive current through a series of light emitting diodes (LEDs). Input voltage is rectified in a multi-level rectifier network having switched capacitors in an ascending-bank configuration for passing voltages in uniform steps between zero volts up to full received voltage VDC. A regulator section, operating on VDC, comprises switched-capacitor stages of H-bridge switching and flying capacitors. A current controlled oscillator drives the states of the switched-capacitor stages and changes its frequency to maintain a constant current to the load. Embodiments are described for isolating the load from the mains, utilizing an LC tank circuit or a multi-primary-winding transformer.
    Type: Application
    Filed: June 2, 2014
    Publication date: November 27, 2014
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Seth R. Sanders, Mitchell Kline
  • Publication number: 20140337448
    Abstract: The present application is directed to a method of aggregating and responding to communications. The method includes receiving incoming communications from a plurality of network connected communication sources, and automatically receiving, at a computing device, incoming communications from a plurality of network connected communication sources; and automatically sending to each of the plurality of network connected communication sources a customized message that is based on at least identification information associated with a sender of the respective incoming communication.
    Type: Application
    Filed: July 24, 2014
    Publication date: November 13, 2014
    Inventors: Mitchell A. Kline, Jane M. Kline, Evan J. Kline, Brett A. Kline