Patents by Inventor Mitchell Z. Weekley

Mitchell Z. Weekley has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10059822
    Abstract: Disclosed is a method for making polystyrene foam which utilizes one or more atmospheric gases, particularly CO2, as the blowing agent in combination with a polymer processing aid (PPA), typically an ester that is relatively non-volatile at the extrusion temperature range. The blowing agent and the PPA may both be introduced into the molten thermoplastic polystyrene resin or the PPA may be incorporated in the solid source polystyrene resins. The resulting foam will be substantially free of residual blowing agent and dimensionally stable at ambient temperatures.
    Type: Grant
    Filed: March 7, 2014
    Date of Patent: August 28, 2018
    Assignee: Owens Corning Intellectual Capital, LLC
    Inventors: Yadollah Delaviz, Bharat Patel, Mark Polasky, Roland R. Loh, Raymond M. Breindel, Mitchell Z. Weekley
  • Patent number: 9752004
    Abstract: Polymer extruded foams that contain cell size enlarging agents are provided. The inventive composition includes a foamable polymer material, at least one blowing agent, and at least one cell size enlarging agent. The blowing agent utilized in the inventive composition is preferably selected such that the composition has a zero ozone depletion and low global warming potential. Examples include any inorganic blowing agents and/or non-hydrogenated chlorofluorocarbons (non-HCFCs). The foamable polymer material is preferably polystyrene. The cell size enlarging agent may be chosen from ethylene vinyl acetate (EVA) and/or ethylene methyl acrylate (EMA). The cell size enlarging agent permits the formation of a foam with large cell sizes that are desirable to achieve a high insulation value and to optimize the physical properties of the foamed product. In addition, the cell size enlarging agent provides an increased cell size to the foamed product without detracting from the physical and thermal properties.
    Type: Grant
    Filed: June 22, 2006
    Date of Patent: September 5, 2017
    Assignee: Owens Corning Intellectual Capital, LLC
    Inventors: Bharat Patel, Yadollah Delaviz, Raymond M. Breindel, Mitchell Z. Weekley, Roland R. Loh, Manoj K. Choudhary
  • Patent number: 9714330
    Abstract: Disclosed is a method for making polystyrene foam which utilizes one or more atmospheric gases, particularly CO2, as the blowing agent in combination with a polymer processing aid (PPA), typically an ester that is relatively non-volatile at the extrusion temperature range. The blowing agent and the PPA may both be introduced into the molten thermoplastic polystyrene resin or the PPA may be incorporated in the solid source polystyrene resins. The resulting foam will be substantially free of residual blowing agent and dimensionally stable at ambient temperatures.
    Type: Grant
    Filed: March 7, 2014
    Date of Patent: July 25, 2017
    Assignee: Owens Corning Intellectual Capital, LLC
    Inventors: Yadollah Delaviz, Bharat Patel, Mark Polasky, Roland R. Loh, Raymond M. Breindel, Mitchell Z. Weekley
  • Publication number: 20170114202
    Abstract: Disclosed is a method for making polystyrene foam which utilizes one or more atmospheric gases, particularly CO2, as the blowing agent in combination with a polymer processing aid (PPA), typically an ester that is relatively non-volatile at the extrusion temperature range. The blowing agent and the PPA may both be introduced into the molten thermoplastic polystyrene resin or the PPA may be incorporated in the solid source polystyrene resins. The resulting foam will be substantially free of residual blowing agent and dimensionally stable at ambient temperatures.
    Type: Application
    Filed: March 7, 2014
    Publication date: April 27, 2017
    Applicant: Owens Corning Intellectual Capital, LLC
    Inventors: Yadollah Delaviz, Bharat Patel, Mark Polasky, Roland R. Loh, Raymond M. Breindel, Mitchell Z. Weekley
  • Publication number: 20170114201
    Abstract: Disclosed is a method for making polystyrene foam which utilizes one or more atmospheric gases, particularly CO2, as the blowing agent in combination with a polymer processing aid (PPA), typically an ester that is relatively non-volatile at the extrusion temperature range. The blowing agent and the PPA may both be introduced into the molten thermoplastic polystyrene resin or the PPA may be incorporated in the solid source polystyrene resins. The resulting foam will be substantially free of residual blowing agent and dimensionally stable at ambient temperatures.
    Type: Application
    Filed: March 7, 2014
    Publication date: April 27, 2017
    Applicant: Owens Corning Intellectual Capital, LLC
    Inventors: Yadollah Delaviz, Bharat Patel, Mark Polasky, Roland R. Loh, Raymond M. Breindel, Mitchell Z. Weekley
  • Publication number: 20160068648
    Abstract: This invention relates to foam insulating products, particularly extruded polystyrene foam, with increasing the cell orientation and reducing cell anisotropic ratio, as well as the process method for making the products thereof for improving the insulating properties and for reducing the manufacturing cost of the foam products. Alternatively, foam insulating products having increased cell compressive strength may be made by decreasing the cell orientation and increasing the cell anisotropic ratio.
    Type: Application
    Filed: October 28, 2015
    Publication date: March 10, 2016
    Inventors: Larry M. Miller, Raymond M. Breindel, Mitchell Z. Weekley, Thomas E. Cisar
  • Publication number: 20140187656
    Abstract: Disclosed is a method for making polystyrene foam which utilizes one or more atmospheric gases, particularly CO2, as the blowing agent in combination with a polymer processing aid (PPA), typically an ester that is relatively non-volatile at the extrusion temperature range. The blowing agent and the PPA may both be introduced into the molten thermoplastic polystyrene resin or the PPA may be incorporated in the solid source polystyrene resins. The resulting foam will be substantially free of residual blowing agent and dimensionally stable at ambient temperatures.
    Type: Application
    Filed: March 7, 2014
    Publication date: July 3, 2014
    Applicant: Owens Corning Intellectual Capital, LLC
    Inventors: Yadollah Delaviz, Bharat Patel, Mark Polasky, Roland R. Loh, Raymond M. Breindel, Mitchell Z. Weekley
  • Publication number: 20140187657
    Abstract: Disclosed is a method for making polystyrene foam which utilizes one or more atmospheric gases, particularly CO2, as the blowing agent in combination with a polymer processing aid (PPA), typically an ester that is relatively non-volatile at the extrusion temperature range. The blowing agent and the PPA may both be introduced into the molten thermoplastic polystyrene resin or the PPA may be incorporated in the solid source polystyrene resins. The resulting foam will be substantially free of residual blowing agent and dimensionally stable at ambient temperatures.
    Type: Application
    Filed: March 7, 2014
    Publication date: July 3, 2014
    Applicant: Owens Corning Intellectual Capital, LLC
    Inventors: Yadollah Delaviz, Bharat Patel, Mark Polasky, Roland R. Loh, Raymond M. Breindel, Mitchell Z. Weekley
  • Patent number: 8754143
    Abstract: Polymeric foam and polymeric foam products that contain a foamable polymer material, at least one blowing agent, a polystyrene/polyethylene oxide copolymer, and optionally, an infrared attenuating agent, are provided. In exemplary embodiments, the blowing agent includes at least one hydrofluorocarbon blowing agent. The maleic anhydride-styrene copolymer grafted with polyethylene oxide provides a water vapor permeability of 1.1 perm inch or greater in the extruded foam product without detrimentally affecting physical or thermal properties of the product. Additionally, the copolymer of maleic anhydride-styrene grafted with polyethylene oxide has a positive affect on the processability of the blowing agent(s) in the composition by both widening the process window and enhancing the solubility of the blowing agent in the polymer melt. Thus, the polystyrene/polyethylene oxide copolymer present in the inventive composition acts as a cell enlarger, a plasticizer, and a processing aid.
    Type: Grant
    Filed: February 18, 2013
    Date of Patent: June 17, 2014
    Assignee: Owens Corning Intellectual Capital, LLC
    Inventors: Yadollah Delaviz, Raymond M. Breindel, Mitchell Z. Weekley, John F. Budinscak, Jr.
  • Patent number: 8557884
    Abstract: This invention relates to foam insulating products, particularly extruded polystyrene foam, with increasing the cell orientation and reducing cell anisotropic ratio, as well as the process method for making the products thereof for improving the insulating properties and for reducing the manufacturing cost of the foam products. Alternatively, foam insulating products having increased cell compressive strength may be made by decreasing the cell orientation and increasing the cell anisotropic ratio.
    Type: Grant
    Filed: October 20, 2006
    Date of Patent: October 15, 2013
    Assignee: Owens Corning Intellectual Capital, LLC
    Inventors: Larry M. Miller, Raymond M. Breindel, Mitchell Z. Weekley, Thomas E. Cisar
  • Patent number: 8378001
    Abstract: Polymeric foam and polymeric foam products that contain a foamable polymer material, at least one blowing agent, a polystyrene/polyethylene oxide copolymer, and optionally, an infrared attenuating agent, are provided. In exemplary embodiments, the blowing agent includes at least one hydrofluorocarbon blowing agent. The maleic anhydride-styrene copolymer grafted with polyethylene oxide provides a water vapor permeability of 1.1 perm inch or greater in the extruded foam product without detrimentally affecting physical or thermal properties of the product. Additionally, the copolymer of maleic anhydride-styrene grafted with polyethylene oxide has a positive affect on the processability of the blowing agent(s) in the composition by both widening the process window and enhancing the solubility of the blowing agent in the polymer melt. Thus, the polystyrene/polyethylene oxide copolymer present in the inventive composition acts as a cell enlarger, a plasticizer, and a processing aid.
    Type: Grant
    Filed: January 29, 2010
    Date of Patent: February 19, 2013
    Assignee: Owens Corning Intellectual Capital, LLC
    Inventors: Yadollah Delaviz, Raymond M. Breindel, Mitchell Z. Weekley, John F. Budinscak
  • Patent number: 8119701
    Abstract: Disclosed is a method for making polystyrene foam which utilizes one or more atmospheric gases, particularly combinations of HFCs and CO2, as the blowing system in combination with a polymer processing aid (PPA), typically an ester that is relatively non-volatile at the extrusion temperature range. The blowing system and the PPA may both be introduced into the molten thermoplastic polystyrene resin or the PPA may be incorporated in the solid source polystyrene resins. The resulting foams will typically exhibit improved dimensional stability at ambient temperatures.
    Type: Grant
    Filed: October 24, 2005
    Date of Patent: February 21, 2012
    Assignee: Owens Corning Intellectual Capital, LLC
    Inventors: Yadollah Delaviz, Bharat Patel, Mark Polasky, Raymond M. Breindel, Roland R. Loh, Mitchell Z. Weekley
  • Publication number: 20110190405
    Abstract: Polymeric foam and polymeric foam products that contain a foamable polymer material, at least one blowing agent, a polystyrene/polyethylene oxide copolymer, and optionally, an infrared attenuating agent, are provided. In exemplary embodiments, the blowing agent includes at least one hydrofluorocarbon blowing agent. The maleic anhydride-styrene copolymer grafted with polyethylene oxide provides a water vapor permeability of 1.1 perm inch or greater in the extruded foam product without detrimentally affecting physical or thermal properties of the product. Additionally, the copolymer of maleic anhydride-styrene grafted with polyethylene oxide has a positive affect on the processability of the blowing agent(s) in the composition by both widening the process window and enhancing the solubility of the blowing agent in the polymer melt. Thus, the polystyrene/polyethylene oxide copolymer present in the inventive composition acts as a cell enlarger, a plasticizer, and a processing aid.
    Type: Application
    Filed: January 29, 2010
    Publication date: August 4, 2011
    Inventors: Yadollah Delaviz, Raymond M. Breindel, Mitchell Z. Weekley, John F. Budinscak
  • Publication number: 20110144221
    Abstract: Polymeric foam and polymeric foam products that contain a foamable polymer material, at least one hydrofluorocarbon (HFC) blowing agent, an infrared attenuating agent such as nanographite, and propylene carbonate, ethylene carbonate, or butylene carbonate as a process additive are provided. In one or more embodiments, the HFC blowing agent is 1,1-difluoroethane (HFC-152a), 1,1,1,2-tetrafluoroethane (HFC-134a), or a combination of 1,1-difluoroethane (HFC-152a) and 1,1,1,2-tetrafluoroethane (HFC-134a). The propylene carbonate, ethylene carbonate, or butylene carbonate acts as a cell enlarger to increase the average cell size of the foamed product, as a process aid, as a plasticizer, and lowers the die pressure. The inventive foam composition produces extruded foams that have insulation values (R-values) that are equal to or better than conventional extruded, closed cell foams produced with 1-chloro-1,1-difluoroethane (HCFC-142b). In exemplary embodiments, less than 4% of the cells are open cells.
    Type: Application
    Filed: June 4, 2008
    Publication date: June 16, 2011
    Applicant: OWENS CORNING INTELLECTUAL CAPITAL, LLC
    Inventors: Yadollah Delaviz, Raymond Marshall Breindel, Mitchell Z. Weekley
  • Publication number: 20080242752
    Abstract: Polymeric foam and polymeric foam products that contain a foamable polymer material, nanographite, and 1,1,2,2-tetrafluoroethane (HFC-134) are provided. Preferably, the foamable polymer material is an alkenyl aromatic polymer material. The foam is free of other conventional blowing agents typically utilized in preparing a foamed product. The nanographite is not chemically or surface modified and is preferably compounded in a polyethylene methyl acrylate copolymer (EMA), which is used both as a medium and a carrier for the nanographite. The nanographite may be compounded in the polymer in an amount up to 60% loading. In addition, the nanographite acts as a nucleating agent, R-value enhancer, infrared attenuating agent, lubricant, UV absorber, and process aid. The inventive foam composition produces extruded foams that have R-values that are equal to or better than conventional extruded foams produced with 1-chloro-1,1-difluoroethane (HCFC-142b).
    Type: Application
    Filed: March 28, 2007
    Publication date: October 2, 2008
    Inventors: Yadollah Delaviz, Raymond M. Breindel, Mitchell Z. Weekley, Roland R. Loh, Manoj K. Choudhary
  • Publication number: 20070299152
    Abstract: Polymer extruded foams that contain cell size enlarging agents are provided. The inventive composition includes a foamable polymer material, at least one blowing agent, and at least one cell size enlarging agent. The blowing agent utilized in the inventive composition is preferably selected such that the composition has a zero ozone depletion and low global warming potential. Examples include any inorganic blowing agents and/or non-hydrogenated chlorofluorocarbons (non-HCFCs). The foamable polymer material is preferably polystyrene. The cell size enlarging agent may be chosen from ethylene vinyl acetate (EVA) and/or ethylene methyl acrylate (EMA). The cell size enlarging agent permits the formation of a foam with large cell sizes that are desirable to achieve a high insulation value and to optimize the physical properties of the foamed product. In addition, the cell size enlarging agent provides an increased cell size to the foamed product without detracting from the physical and thermal properties.
    Type: Application
    Filed: June 22, 2006
    Publication date: December 27, 2007
    Inventors: Bharat Patel, Yadollah Delaviz, Raymond M. Breindel, Mitchell Z. Weekley, Roland R. Loh, Manoj K. Choudhary
  • Patent number: 7166646
    Abstract: This invention relates to foam insulating products, particularly extruded polystyrene foam, containing asphalt as an infrared attuation and process additives for improving the insulating properties and for reducing the manufacturing cost of the foam products.
    Type: Grant
    Filed: May 18, 2004
    Date of Patent: January 23, 2007
    Assignee: Owens Corning Fiberglas Technology, Inc.
    Inventors: Roland R. Loh, Barbara A. Fabian, Sheree L. Bargabos, Mitchell Z. Weekley, Byron J. Hulls, J. Patrick Rynd
  • Patent number: 6908950
    Abstract: This invention relates to foam insulating products, particularly extruded polystyrene foam, containing asphalt as an infrared attuation and process additives for improving the insulating properties and for reducing the manufacturing cost of the foam products.
    Type: Grant
    Filed: October 25, 2001
    Date of Patent: June 21, 2005
    Assignee: Owens Corning Fiberglas Technology, Inc.
    Inventors: Roland R. Loh, Barbara A. Fabian, Sheree L. Bargabos, Mitchell Z. Weekley, Byron J. Hulls, J. Patrick Rynd
  • Publication number: 20040242715
    Abstract: This invention relates to foam insulating products, particularly extruded polystyrene foam, containing asphalt as an infrared attuation and process additives for improving the insulating properties and for reducing the manufacturing cost of the foam products.
    Type: Application
    Filed: May 18, 2004
    Publication date: December 2, 2004
    Inventors: Roland R. Loh, Barbara A. Fabian, Sheree L. Bargabos, Mitchell Z. Weekley, Byron J. Hulls, J. Patrick Rynd
  • Publication number: 20030225172
    Abstract: This invention relates to foam insulating products, particularly extruded polystyrene foam, with increasing the cell orientation and reducing cell anisotropic ratio, as well as the process method for making the products thereof for improving the insulating properties and for reducing the manufacturing cost of the foam products. Alternatively, foam insulating products having increased cell compressive strength may be made by decreasing the cell orientation and increasing the cell anisotropic ratio.
    Type: Application
    Filed: May 31, 2002
    Publication date: December 4, 2003
    Inventors: Larry M. Miller, Raymond M. Breindel, Mitchell Z. Weekley, Thomas E. Cisar