Patents by Inventor Miten Jain

Miten Jain has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230295714
    Abstract: Provided are methods of producing a nucleic acid complex. In certain aspects, the methods include combining a sample including ribosomal RNA (rRNA) and a probe complement oligonucleotide with an oligonucleotide probe. The oligonucleotide probe includes a 3? region complementary to a 3? region of a rRNA, and a 5? region complementary to the probe complement oligonucleotide. The combining is under conditions in which the 3? region of the oligonucleotide probe hybridizes to the 3? region of the rRNA and the 5? region of the oligonucleotide probe hybridizes to the probe complement oligonucleotide, thereby producing a nucleic acid complex. In certain aspects, the methods find use in producing rRNA libraries that find use, e.g., in rRNA sequencing applications. Oligonucleotide probes, libraries thereof, compositions, and kits that find use, e.g., in practicing the methods of the present disclosure, are also provided.
    Type: Application
    Filed: January 19, 2023
    Publication date: September 21, 2023
    Inventors: Andrew M. Smith, Miten Jain
  • Patent number: 11578362
    Abstract: Provided are methods of producing a nucleic acid complex. In certain aspects, the methods include combining a sample including ribosomal RNA (rRNA) and a probe complement oligonucleotide with an oligonucleotide probe. The oligonucleotide probe includes a 3? region complementary to a 3? region of a rRNA, and a 5? region complementary to the probe complement oligonucleotide. The combining is under conditions in which the 3? region of the oligonucleotide probe hybridizes to the 3? region of the rRNA and the 5? region of the oligonucleotide probe hybridizes to the probe complement oligonucleotide, thereby producing a nucleic acid complex. In certain aspects, the methods find use in producing rRNA libraries that find use, e.g., in rRNA sequencing applications. Oligonucleotide probes, libraries thereof, compositions, and kits that find use, e.g., in practicing the methods of the present disclosure, are also provided.
    Type: Grant
    Filed: April 26, 2018
    Date of Patent: February 14, 2023
    Assignee: The Regents of the University of California
    Inventors: Andrew M. Smith, Miten Jain
  • Publication number: 20210348224
    Abstract: Provided are methods of analyzing capped ribonucleic acids (RNAs). The methods include translocating an adapted RNA through a nanopore of a nanopore device. The adapted RNA includes an RNA region, a 5? cap, and an adapter polynucleotide attached to the 5? cap. The methods include monitoring ionic current through the nanopore during the translocating, translocating the 5? cap through the nanopore, and identifying one or more ionic current features characteristic of the 5? cap (e.g., a triphosphate linkage between the 5? cap and nucleotide N1 of the RNA region, a 5? to 5? orientation of the 5? cap and nucleotide N1 of the RNA region, and/or the like), translocating through the nanopore. Also provided are computer-readable media, computer devices, and systems that find use, e.g., in practicing the methods of the present disclosure.
    Type: Application
    Filed: May 22, 2019
    Publication date: November 11, 2021
    Inventors: Logan Mulroney, Mark Akeson, Miten Jain, Hugh Olsen
  • Publication number: 20210071239
    Abstract: Disclosed are methods for polynucleotide sequencing that detect the location of selected nucleobases with greater precision. The methods can be used to determine the location and nature of modified bases in a polynucleotide, that is, non-canonical bases, or to improve accuracy of sequencing of “problem” regions of DNA sequencing such as homopolymers, GC rich areas, etc. The sequencing method exemplified is nanopore sequencing. Nanopore sequencing is used to generate a unique signal at a point in a polynucleotide sequence where an abasic site (AP site, or apurinic or apyrimidinic site) exists. As part of the method, an abasic site is specifically created enzymatically using a DNA glycosylase that recognizes a pre-determined nucleobase species and cleaves the N-glycosidic bond to release only that base, leaving an AP site in its place.
    Type: Application
    Filed: July 22, 2020
    Publication date: March 11, 2021
    Inventors: Miten Jain, Hugh Edward Olsen, Mark A. Akeson
  • Patent number: 10760117
    Abstract: Disclosed are methods for polynucleotide sequencing that detect the location of selected nucleobases with greater precision. The methods can be used to determine the location and nature of modified bases in a polynucleotide, that is, non-canonical bases, or to improve accuracy of sequencing of “problem” regions of DNA sequencing such as homopolymers, GC rich areas, etc. The sequencing method exemplified is nanopore sequencing. Nanopore sequencing is used to generate a unique signal at a point in a polynucleotide sequence where an abasic site (AP site, or apurinic or apyrimidinic site) exists. As part of the method, an abasic site is specifically created enzymatically using a DNA glycosylase that recognizes a pre-determined nucleobase species and cleaves the N-glycosidic bond to release only that base, leaving an AP site in its place.
    Type: Grant
    Filed: April 5, 2016
    Date of Patent: September 1, 2020
    Assignee: The Regents of the University of California
    Inventors: Miten Jain, Hugh Edward Olsen, Mark A. Akeson
  • Publication number: 20200140940
    Abstract: Provided are methods of producing a nucleic acid complex. In certain aspects, the methods include combining a sample including ribosomal RNA (rRNA) and a probe complement oligonucleotide with an oligonucleotide probe. The oligonucleotide probe includes a 3? region complementary to a 3? region of a rRNA, and a 5? region complementary to the probe complement oligonucleotide. The combining is under conditions in which the 3? region of the oligonucleotide probe hybridizes to the 3? region of the rRNA and the 5? region of the oligonucleotide probe hybridizes to the probe complement oligonucleotide, thereby producing a nucleic acid complex. In certain aspects, the methods find use in producing rRNA libraries that find use, e.g., in rRNA sequencing applications. Oligonucleotide probes, libraries thereof, compositions, and kits that find use, e.g., in practicing the methods of the present disclosure, are also provided.
    Type: Application
    Filed: April 26, 2018
    Publication date: May 7, 2020
    Inventors: Andrew M. Smith, Miten Jain
  • Publication number: 20180320168
    Abstract: Provided are methods of producing size-selected nucleic acid libraries. The methods include contacting a nucleic acid sample and a nucleic acid binding reagent including an affinity tag, under conditions in which nucleic acids of less than a desired length are substantially bound to the nucleic acid binding reagent and nucleic acids of the desired length are substantially not bound to the nucleic acid binding reagent. The conditions include the duration of the contacting, the concentration of the nucleic acid binding reagent, or both. The methods further include separating, using the affinity tag, the nucleic acids of less than the desired length bound to the nucleic acid binding reagent from the nucleic acids of the desired length not bound to the nucleic acid binding reagent, to produce a size-selected nucleic acid library. Compositions and kits that find use, e.g., in practicing the methods of the present disclosure, are also provided.
    Type: Application
    Filed: May 3, 2018
    Publication date: November 8, 2018
    Inventors: Hugh E. Olsen, Miten Jain, Mark A. Akeson
  • Publication number: 20180258474
    Abstract: Disclosed are methods for polynucleotide sequencing that detect the location of selected nucleobases with greater precision. The methods can be used to determine the location and nature of modified bases in a polynucleotide, that is, non-canonical bases, or to improve accuracy of sequencing of “problem” regions of DNA sequencing such as homopolymers, GC rich areas, etc. The sequencing method exemplified is nanopore sequencing. Nanopore sequencing is used to generate a unique signal at a point in a polynucleotide sequence where an abasic site (AP site, or apurinic or apyrimidinic site) exists. As part of the method, an abasic site is specifically created enzymatically using a DNA glycosylase that recognizes a pre-determined nucleobase species and cleaves the N-glycosidic bond to release only that base, leaving an AP site in its place.
    Type: Application
    Filed: April 5, 2016
    Publication date: September 13, 2018
    Inventors: Miten Jain, Hugh Edward Olsen, Mark A. Akeson