Patents by Inventor Mitsuharu Anbe

Mitsuharu Anbe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10633470
    Abstract: A method for producing a conjugated diene polymer having a high content of cis-1,4-structures with a high activity, a conjugated diene polymer, and a modified conjugated diene polymer. The catalyst for conjugated diene polymerization in the method includes: a non-metallocene type gadolinium compound (A) represented by the general formula (1); an ionic compound (B) formed of a non-coordinating anion and a cation; and an organic metal compound (C) of an element selected from the group consisting of a group 2, a group 12, and a group 13 of the periodic table.
    Type: Grant
    Filed: May 6, 2019
    Date of Patent: April 28, 2020
    Assignee: Ube Industries, Ltd.
    Inventors: Koji Shiba, Masato Murakami, Michinori Suzuki, Naomi Okamoto, Mitsuharu Anbe, Masahiro Tanaka
  • Patent number: 10508163
    Abstract: A conjugated diene polymer having a high content of cis-1,4-structures with a high activity, a conjugated diene polymer and a modified conjugated diene polymer using the same, a rubber composition for a tire, and a rubber composition for a rubber belt. Described are a catalyst for a conjugated diene polymerization including: a non-metallocene type gadolinium compound (A) represented by the general formula (1); an ionic compound (B) formed of a non-coordinating anion and a cation; and an organic metal compound (C) of an element selected from the group consisting of a group 2, a group 12, and a group 13 of the periodic table, a conjugated diene polymer and a modified conjugated diene polymer obtained using the same, a rubber composition for a tire, and a rubber composition for a rubber belt.
    Type: Grant
    Filed: November 2, 2017
    Date of Patent: December 17, 2019
    Assignee: Ube Industries, Ltd.
    Inventors: Koji Shiba, Masato Murakami, Michinori Suzuki, Naomi Okamoto, Mitsuharu Anbe, Masahiro Tanaka
  • Publication number: 20190256628
    Abstract: A method for producing a conjugated diene polymer having a high content of cis-1,4-structures with a high activity, a conjugated diene polymer, and a modified conjugated diene polymer. The catalyst for conjugated diene polymerization in the method includes: a non-metallocene type gadolinium compound (A) represented by the general formula (1); an ionic compound (B) formed of a non-coordinating anion and a cation; and an organic metal compound (C) of an element selected from the group consisting of a group 2, a group 12, and a group 13 of the periodic table.
    Type: Application
    Filed: May 6, 2019
    Publication date: August 22, 2019
    Inventors: Koji Shiba, Masato Murakami, Michinori Suzuki, Naomi Okamoto, Mitsuharu Anbe, Masahiro Tanaka
  • Publication number: 20180079844
    Abstract: A conjugated diene polymer having a high content of cis-1,4-structures with a high activity, a conjugated diene polymer and a modified conjugated diene polymer using the same, a rubber composition for a tire, and a rubber composition for a rubber belt. Described are a catalyst for a conjugated diene polymerization including: a non-metallocene type gadolinium compound (A) represented by the general formula (1); an ionic compound (B) formed of a non-coordinating anion and a cation; and an organic metal compound (C) of an element selected from the group consisting of a group 2, a group 12, and a group 13 of the periodic table, a conjugated diene polymer and a modified conjugated diene polymer obtained using the same, a rubber composition for a tire, and a rubber composition for a rubber belt.
    Type: Application
    Filed: November 2, 2017
    Publication date: March 22, 2018
    Inventors: Koji Shiba, Masato Murakami, Michinori Suzuki, Naomi Okamoto, Mitsuharu Anbe, Masahiro Tanaka
  • Publication number: 20160009835
    Abstract: Provided are a catalyst for a conjugated diene polymerization capable of producing a conjugated diene polymer having a high content of cis-1,4-structures with a high activity, a conjugated diene polymer and a modified conjugated diene polymer using the same, production methods thereof, a rubber composition for a tire, and a rubber composition for a rubber belt. Described are a catalyst for a conjugated diene polymerization including: a non-metallocene type gadolinium compound (A) represented by the general formula (1); an ionic compound (B) formed of a non-coordinating anion and a cation; and an organic metal compound (C) of an element selected from the group consisting of a group 2, a group 12, and a group 13 of the periodic table, a conjugated diene polymer and a modified conjugated diene polymer obtained using the same, production methods thereof, a rubber composition for a tire, and a rubber composition for a rubber belt.
    Type: Application
    Filed: March 13, 2014
    Publication date: January 14, 2016
    Inventors: Koji Shiba, Masato Murakami, Michinori Suzuki, Naomi Okamoto, Mitsuharu Anbe, Masahiro Tanaka
  • Patent number: 8586680
    Abstract: The object is to provide a rubber composition for a high-strength golf ball which has a high hardness, high resiliency, excellent processability and improved filler dispersibility, by adjusting each of the Mooney viscosity, the molecular weight distribution and the n value (the rate-dependent index for Mooney viscosity) of a high-cis-polybutadiene rubber using a cobalt catalyst to a value falling within a specific range. The rubber composition comprises 100 parts by weight of a high-cis-polybutadiene synthesized using a cobalt catalyst and 10 to 50 parts by weight of a co-crosslinking agent, wherein the high-cis-polybutadiene satisfies the following requirements (a) to (c): (a) the Mooney viscosity (ML) is 40 to 55; (b) the molecular weight distribution [a weight average molecular weight MW)/a number average molecular weight (Mn)] is 3.0 to 4.2; and (c) the rate-dependent index of Mooney viscosity (n value) is 2.3 to 3.0.
    Type: Grant
    Filed: June 26, 2007
    Date of Patent: November 19, 2013
    Assignee: Ube Industries, Ltd.
    Inventors: Naomi Okamoto, Mitsuharu Anbe, Takashi Wada
  • Patent number: 8283401
    Abstract: Provided by using a catalyst containing an yttrium compound is conjugated diene polymer with very low solution viscosity, improved workability, high degree of branching, and high content of cis-1,4 structures. Also provided is a rubber composition utilizing the polymer and allowing excellent dispersion of reinforcing agent. According to a method of manufacturing a conjugated diene polymer characterized by polymerizing a conjugated diene at 50 to 120° C. in the presence of a catalyst obtained from (A) an yttrium compound, (B) an ionic compound consisting of a non-coordinating anion and a cation, and (C) an organoaluminum compound, the conjugated diene polymer has the following characteristics that: (1) a ratio (Tcp/ML1+4) between a 5 wt % toluene solution viscosity (Tcp) measured at 25° C. and a Mooney viscosity (ML1+4) at 100° C. is 0.1 to 1.2; and (2) a content of cis-1,4 structures is 80% or higher, and a content of 1,2 structures is lower than 5%.
    Type: Grant
    Filed: December 4, 2009
    Date of Patent: October 9, 2012
    Assignee: UBE Industries, Ltd
    Inventors: Masato Murakami, Koji Shiba, Takeshi Shoda, Mitsuharu Anbe
  • Publication number: 20110269899
    Abstract: Provided by using a catalyst containing an yttrium compound is conjugated diene polymer with very low solution viscosity, improved workability, high degree of branching, and high content of cis-1,4 structures. Also provided is a rubber composition utilizing the polymer and allowing excellent dispersion of reinforcing agent. According to a method of manufacturing a conjugated diene polymer characterized by polymerizing a conjugated diene at 50 to 120° C. in the presence of a catalyst obtained from (A) an yttrium compound, (B) an ionic compound consisting of a non-coordinating anion and a cation, and (C) an organoaluminum compound, the conjugated diene polymer has the following characteristics that: (1) a ratio (Tcp/ML1+4) between a 5 wt % toluene solution viscosity (Tcp) measured at 25° C. and a Mooney viscosity (ML1+4) at 100° C. is 0.1 to 1.2; and (2) a content of cis-1,4 structures is 80% or higher, and a content of 1,2 structures is lower than 5%.
    Type: Application
    Filed: December 4, 2009
    Publication date: November 3, 2011
    Applicant: UBE INDUSTRIES, LTD.
    Inventors: Masato Murakami, Koji Shiba, Takeshi Shoda, Mitsuharu Anbe
  • Patent number: 7884154
    Abstract: The rubber composition of the invention includes a rubber composition which is a silica compounded rubber composition for tire containing 100 parts by weight of a rubber component made of (a) from 20 to 80% by weight of a vinyl-cis-polybutadiene rubber containing 1,2-polybutadiene having a melting point of 170° C. or higher and a high-molecular substance having at least one unsaturated double bond per a repeating unit and comprising at least one member selected from polyisoprene, crystalline polybutadiene having a melting point of not higher than 150° C.
    Type: Grant
    Filed: December 20, 2005
    Date of Patent: February 8, 2011
    Assignee: UBE Industries, Ltd.
    Inventors: Naomi Okamoto, Mitsuharu Anbe
  • Patent number: 7884155
    Abstract: A process for producing a vinyl-cis-polybutadiene rubber, including mixing (A) vinyl-cis-polybutadiene obtained by (1) a step of adding a cis-1,4-polymerization catalyst obtainable from an organoaluminum compound and a soluble cobalt compound to a mixture containing 1,3-butadiene and a hydrocarbon-based organic solvent as the major components and having an adjusted water content, thereby subjecting the 1,3-butadiene to cis-1,4-polymerization and subsequently, (2) a step of making a catalyst obtainable from a soluble cobalt compound, an organoaluminum compound represented by the general formula, AlR3 (wherein R represents an alkyl group having from 1 to 6 carbon atoms, a phenyl group, or a cycloalkyl group), and carbon disulfide present in the resulting polymerization reaction mixture, thereby subjecting the 1,3-butadiene to 1,2-polymerization; and (B) cis-polybutadiene obtained by a step of adding the foregoing cis-1,4-polymerization catalyst, thereby subjecting the 1,3-butadiene to cis-1,4-polymerization and
    Type: Grant
    Filed: December 20, 2005
    Date of Patent: February 8, 2011
    Assignee: Ube Industries, Ltd.
    Inventors: Naomi Okamoto, Mitsuharu Anbe, Jyun Yamashita, Tetsuji Nakajima, Takashi Kitamura, Osamu Kimura, Takashi Wada
  • Patent number: 7851537
    Abstract: The invention has an object to provide a rubber composition for tire with improved processability and abrasion resistance. The invention relates to a rubber composition for tire, comprising: (a) 5-90 weight parts of a high cis polybutadiene having a cis structure in a proportion of 95 wt % or higher in a microstructure analysis; (b) 90-5 weight parts of a diene-based rubber other than (a); and (c) 1-100 weight parts of a reinforcing agent blended in 100 weight parts of a rubber component including (a)+(b). The high cis polybutadiene is synthesized using a cobalt-based catalyst and satisfies the requirements of: (i) a Mooney viscosity (ML) of 40-49; (ii) a molecular weight distribution [Weight average molecular weight (Mw)/Number average molecular weight (Mn)] of 3.0-3.9; and (iii) a velocity dependence index (n-value) of the Mooney viscosity of 2.3-3.0.
    Type: Grant
    Filed: January 16, 2007
    Date of Patent: December 14, 2010
    Assignee: UBE Industries, Ltd.
    Inventors: Mitsuharu Anbe, Naomi Okamoto, Takashi Wada
  • Publication number: 20100151965
    Abstract: The object is to provide a rubber composition for a high-strength golf ball which has a high hardness, high resiliency, excellent processability and improved filler dispersibility, by adjusting each of the Mooney viscosity, the molecular weight distribution and the n value (the rate-dependent index for Mooney viscosity) of a high-cis-polybutadiene rubber using a cobalt catalyst to a value falling within a specific range. The rubber composition comprises 100 parts by weight of a high-cis-polybutadiene synthesized using a cobalt catalyst and 10 to 50 parts by weight of a co-crosslinking agent, wherein the high-cis-polybutadiene satisfies the following requirements (a) to (c): (a) the Mooney viscosity (ML) is 40 to 55; (b) the molecular weight distribution [a weight average molecular weight MW)/a number average molecular weight (Mn)] is 3.0 to 4.2; and (c) the rate-dependent index of Mooney viscosity (n value) is 2.3 to 3.0.
    Type: Application
    Filed: June 26, 2007
    Publication date: June 17, 2010
    Inventors: Naomi Okamoto, Mitsuharu Anbe, Takashi Wada
  • Publication number: 20090176910
    Abstract: The invention has an object to provide a rubber composition for tire with improved processability and abrasion resistance. The invention relates to a rubber composition for tire, comprising: (a) 5-90 weight parts of a high cis polybutadiene having a cis structure in a proportion of 95 wt % or higher in a microstructure analysis; (b) 90-5 weight parts of a diene-based rubber other than (a); and (c) 1-100 weight parts of a reinforcing agent blended in 100 weight parts of a rubber component including (a)+(b). The high cis polybutadiene is synthesized using a cobalt-based catalyst and satisfies the requirements of: (i) a Mooney viscosity (ML) of 40-49; (ii) a molecular weight distribution [Weight average molecular weight (Mw)/Number average molecular weight (Mn)] of 3.0-3.9; and (iii) a velocity dependence index (n-value) of the Mooney viscosity of 2.3-3.0.
    Type: Application
    Filed: January 16, 2007
    Publication date: July 9, 2009
    Applicant: UBE INDUSTRIES, LTD.
    Inventors: Mitsuharu Anbe, Naomi Okamoto, Takashi Wada
  • Publication number: 20070197714
    Abstract: A process for producing a vinyl-cis-polybutadiene rubber, including mixing (A) vinyl-cis-polybutadiene obtained by (1) a step of adding a cis-1,4-polymerization catalyst obtainable from an organoaluminum compound and a soluble cobalt compound to a mixture containing 1,3-butadiene and a hydrocarbon-based organic solvent as the major components and having an adjusted water content, thereby subjecting the 1,3-butadiene to cis-1,4-polymerization and subsequently, (2) a step of making a catalyst obtainable from a soluble cobalt compound, an organoaluminum compound represented by the general formula, AlR3 (wherein R represents an alkyl group having from 1 to 6 carbon atoms, a phenyl group, or a cycloalkyl group), and carbon disulfide present in the resulting polymerization reaction mixture, thereby subjecting the 1,3-butadiene to 1,2-polymerization; and (B) cis-polybutadiene obtained by a step of adding the foregoing cis-1,4-polymerization catalyst, thereby subjecting the 1,3-butadiene to cis-1,4-polymerization and
    Type: Application
    Filed: December 20, 2005
    Publication date: August 23, 2007
    Applicant: UBE INDUSTRIES, LTD.
    Inventors: Naomi Okamoto, Mitsuharu Anbe, Jyun Yamashita, Tetsuji Nakajima, Takashi Kitamura, Osamu Kimura, Takashi Wada
  • Publication number: 20070155889
    Abstract: The rubber composition of the invention includes a rubber composition which is a silica compounded rubber composition for tire containing 100 parts by weight of a rubber component made of (a) from 20 to 80% by weight of a vinyl-cis-polybutadiene rubber containing 1,2-polybutadiene having a melting point of 170° C. or higher and a high-molecular substance having at least one unsaturated double bond per a repeating unit and comprising at least one member selected from polyisoprene, crystalline polybutadiene having a melting point of not higher than 150° C.
    Type: Application
    Filed: December 20, 2005
    Publication date: July 5, 2007
    Applicant: UBE INDUSTRIES, LTD.
    Inventors: Naomi Okamoto, Mitsuharu Anbe