Patents by Inventor Mitsuhiro Endo
Mitsuhiro Endo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20200235157Abstract: A photoelectric conversion apparatus includes a semiconductor substrate including a photoelectric conversion portion, a metal containing portion provided on the semiconductor substrate, an interlayer insulation film arranged on the semiconductor substrate to cover the metal containing portion, a first silicon nitride layer arranged on the photoelectric conversion portion to include a portion lying between the interlayer insulation film and the semiconductor substrate, a silicon oxide film including a portion arranged between the first silicon nitride layer and the photoelectric conversion portion, and a portion arranged between the interlayer insulation film and the metal containing portion, a second silicon nitride layer arranged between the silicon oxide film and the metal containing portion.Type: ApplicationFiled: April 3, 2020Publication date: July 23, 2020Inventors: Shinji Kodaira, Takehito Okabe, Mitsuhiro Yomori, Nobuyuki Endo, Tomoyuki Tezuka, Toshihiro Shoyama, Jun Iwata
-
Patent number: 10644055Abstract: A photoelectric conversion apparatus includes a semiconductor substrate including a photoelectric conversion portion, a metal containing portion provided on the semiconductor substrate, an interlayer insulation film arranged on the semiconductor substrate to cover the metal containing portion, a first silicon nitride layer arranged on the photoelectric conversion portion to include a portion lying between the interlayer insulation film and the semiconductor substrate, a silicon oxide film including a portion arranged between the first silicon nitride layer and the photoelectric conversion portion, and a portion arranged between the interlayer insulation film and the metal containing portion, a second silicon nitride layer arranged between the silicon oxide film and the metal containing portion.Type: GrantFiled: July 9, 2018Date of Patent: May 5, 2020Assignee: Canon Kabushiki KaishaInventors: Shinji Kodaira, Takehito Okabe, Mitsuhiro Yomori, Nobuyuki Endo, Tomoyuki Tezuka, Toshihiro Shoyama, Jun Iwata
-
Patent number: 10522397Abstract: A miniaturized transistor is provided. A first layer is formed over a third insulator over a semiconductor; a second layer is formed over the first layer; an etching mask is formed over the second layer; the second layer is etched using the etching mask until the first layer is exposed to form a third layer; a selective growth layer is formed on a top surface and a side surface of the third layer; the first layer is etched using the third layer and the selective growth layer until the third insulator is exposed to form a fourth layer; and the third insulator is etched using the third layer, the selective growth layer, and the fourth layer until the semiconductor is exposed to form a first insulator.Type: GrantFiled: March 15, 2019Date of Patent: December 31, 2019Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventors: Yuta Endo, Hideomi Suzawa, Sachiaki Tezuka, Tetsuhiro Tanaka, Toshiya Endo, Mitsuhiro Ichijo
-
Patent number: 10468531Abstract: One object is to provide a semiconductor device including an oxide semiconductor, which has stable electric characteristics and high reliability. Another object is to manufacture a highly reliable semiconductor device in a high yield. In a top-gate staggered transistor including an oxide semiconductor film, as a first gate insulating film in contact with the oxide semiconductor film, a silicon oxide film is formed by a plasma CVD method with use of a deposition gas containing silicon fluoride and oxygen; and as a second gate insulating film stacked over the first gate insulating film, a silicon oxide film is formed by a plasma CVD method with use of a deposition gas containing silicon hydride and oxygen.Type: GrantFiled: October 14, 2016Date of Patent: November 5, 2019Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventors: Kunio Kimura, Mitsuhiro Ichijo, Toshiya Endo
-
Publication number: 20190237586Abstract: A miniaturized transistor is provided. A first layer is formed over a third insulator over a semiconductor; a second layer is formed over the first layer; an etching mask is formed over the second layer; the second layer is etched using the etching mask until the first layer is exposed to form a third layer; a selective growth layer is formed on a top surface and a side surface of the third layer; the first layer is etched using the third layer and the selective growth layer until the third insulator is exposed to form a fourth layer; and the third insulator is etched using the third layer, the selective growth layer, and the fourth layer until the semiconductor is exposed to form a first insulator.Type: ApplicationFiled: March 15, 2019Publication date: August 1, 2019Inventors: Yuta ENDO, Hideomi SUZAWA, Sachiaki TEZUKA, Tetsuhiro TANAKA, Toshiya ENDO, Mitsuhiro ICHIJO
-
Publication number: 20190165179Abstract: A semiconductor device includes a semiconductor, a first conductor, a second conductor, a third conductor, a fourth conductor, a first insulator, a second insulator, a third insulator, and a fourth insulator. The first conductor and the semiconductor partly overlap with each other with the first insulator positioned therebetween. The second conductor and the third conductor have regions in contact with the semiconductor. The semiconductor has a region in contact with the second insulator. The fourth insulator has a first region and a second region. The first region is thicker than the second region. The first region has a region in contact with the second insulator. The second region has a region in contact with the third insulator. The fourth conductor and the second insulator partly overlap with each other with the fourth insulator positioned therebetween.Type: ApplicationFiled: January 16, 2019Publication date: May 30, 2019Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.Inventors: Sachiaki TEZUKA, Tetsuhiro TANAKA, Toshiya ENDO, Mitsuhiro ICHIJO
-
Patent number: 10005441Abstract: An electric motor is controlled according to the back and forth movement of an input rod, which is caused by brake pedal operation; a primary piston is propelled to generate hydraulic brake pressure in a master cylinder; and the hydraulic brake pressure is fed back to the input rod through an input piston. The input piston is resiliently held by springs with respect to the primary piston. A jump-in clearance is created between the input piston and the input rod by a rearward spring. At the initial stage of braking, hydraulic brake pressure is not transmitted to the input rod due to the jump-in clearance, which provides jump-in characteristics. The jump-in clearance can be set, regardless of the amount of a relative displacement between the primary piston and the input piston, so that the range of adjustment for regenerative braking can be set larger than the jump-in clearance.Type: GrantFiled: March 31, 2014Date of Patent: June 26, 2018Assignee: HITACHI AUTOMOTIVE SYSTEMS, LTD.Inventors: Kunihiro Matsunaga, Mitsuhiro Endo, Satohiro Koi, Naoki Shirakawa, Atsushi Odaira, Takuya Usui, Hiroshi Shigeta
-
Patent number: 9896074Abstract: An input rod is operated by a brake pedal to introduce the air into a variable-pressure chamber through a control valve to propel a power piston, thereby advancing a primary piston to generate a brake fluid pressure in a master cylinder. A part of the reaction force from the fluid pressure is transmitted to the input rod through a reaction member. The primary piston is provided with an idle stroke in which no fluid pressure is generated, and the reaction force to be transmitted to a plunger is limited by a reaction force adjusting spring. In the region of the idle stroke, a fluid pressure is supplied to a wheel cylinder through a fluid pressure control unit to perform regenerative cooperative control, and a reaction force from a reaction spring is applied to the input rod.Type: GrantFiled: February 6, 2012Date of Patent: February 20, 2018Assignee: HITACHI AUTOMOTIVE SYSTEMS, LTD.Inventors: Mitsuhiro Endo, Hiroshi Owada
-
Patent number: 9656647Abstract: A pneumatic booster (40) disposed between a brake pedal (5) and a master cylinder (7) includes a cylindrical member (60) provided on an outer circumferential side of an output rod (58). A seal member (62) seals between an outer circumferential side of the cylindrical member and a cylindrical portion of a front shell, and an O-ring seals between the cylindrical member and the output rod. The cylindrical member causes a differential pressure between a negative pressure chamber (A) and an atmosphere chamber (C) to be applied to a valve body (46). One axial side of the cylindrical member is configured to cause an atmosphere pressure to be applied to the valve body by abutting against a cylindrical protruding portion of the valve body, thereby pushing the valve body with the aid of the differential pressure in the direction as a biasing direction of a return spring.Type: GrantFiled: March 26, 2013Date of Patent: May 23, 2017Assignee: HITACHI AUTOMOTIVE SYSTEMS, LTD.Inventors: Mitsuhiro Endo, Shuzo Watanabe
-
Publication number: 20160068146Abstract: An electric motor is controlled according to the back and forth movement of an input rod, which is caused by brake pedal operation; a primary piston is propelled to generate hydraulic brake pressure in a master cylinder; and the hydraulic brake pressure is fed back to the input rod through an input piston. The input piston is resiliency held by springs with respect to the primary piston. A jump-in clearance is created between the input piston and the input rod by a rearward spring. At the initial stage of braking, hydraulic brake pressure is not transmitted to the input rod due to the jump-in clearance, which provides jump-in characteristics. The jump-in clearance can be set, regardless of the amount of a relative displacement between the primary piston and the input piston, so that the range of adjustment for regenerative braking can be set larger than the jump-in clearance.Type: ApplicationFiled: March 31, 2014Publication date: March 10, 2016Inventors: Kunihiro MATSUNAGA, Mitsuhiro ENDO, Satohiro KOI, Naoki SHIRAKAWA, Atsushi ODAIRA, Takuya USUI, Hiroshi SHIGETA
-
Patent number: 9056601Abstract: A controller controls a hydraulic control device to generate a target braking force corresponding to the stroke of a brake pedal by adjusting a controlled hydraulic braking force portion generated by the hydraulic control device on the basis of the relationship with a master hydraulic braking force portion generated from the brake hydraulic pressure in a master cylinder and a regenerative braking force portion generated by a regenerative brake device. The regenerative brake device maximizes the regenerative braking force portion before the stroke of the brake pedal reaches an idle stroke, and thereafter, the hydraulic control device 5 starts braking by the controlled hydraulic braking force portion. When the stroke of the brake pedal reaches the idle stroke, the master cylinder starts braking by the master hydraulic braking force portion.Type: GrantFiled: March 15, 2013Date of Patent: June 16, 2015Assignee: HITACHI AUTOMOTIVE SYSTEMS, LTD.Inventors: Takato Ogiwara, Mitsuhiro Endo, Naganori Koshimizu
-
Publication number: 20150040558Abstract: A pneumatic booster (40) disposed between a brake pedal (5) and a master cylinder (7) includes a cylindrical member (60) provided on an outer circumferential side of an output rod (58). A seal member (62) seals between an outer circumferential side of the cylindrical member and a cylindrical portion of a front shell, and an O-ring seals between the cylindrical member and the output rod. The cylindrical member causes a differential pressure between a negative pressure chamber (A) and an atmosphere chamber (C) to be applied to a valve body (46). One axial side of the cylindrical member is configured to cause an atmosphere pressure to be applied to the valve body by abutting against a cylindrical protruding portion of the valve body, thereby pushing the valve body with the aid of the differential pressure in the direction as a biasing direction of a return spring.Type: ApplicationFiled: March 26, 2013Publication date: February 12, 2015Inventors: Mitsuhiro Endo, Shuzo Watanabe
-
Publication number: 20130257140Abstract: A controller controls a hydraulic control device to generate a target braking force corresponding to the stroke of a brake pedal by adjusting a controlled hydraulic braking force portion generated by the hydraulic control device on the basis of the relationship with a master hydraulic braking force portion generated from the brake hydraulic pressure in a master cylinder and a regenerative braking force portion generated by a regenerative brake device. The regenerative brake device maximizes the regenerative braking force portion before the stroke of the brake pedal reaches an idle stroke, and thereafter, the hydraulic control device 5 starts braking by the controlled hydraulic braking force portion. When the stroke of the brake pedal reaches the idle stroke, the master cylinder starts braking by the master hydraulic braking force portion.Type: ApplicationFiled: March 15, 2013Publication date: October 3, 2013Applicant: HITACHI AUTOMOTIVE SYSTEMS, LTD.Inventors: Takato OGIWARA, Mitsuhiro ENDO, Naganori KOSHIMIZU
-
Patent number: 8283252Abstract: A method of manufacturing a semiconductor wafer, including a step of differentiating the glossiness of a front surface from that of a rear surface of the wafer by holding the semiconductor wafer in a wafer holding hole formed in a carrier plate, and simultaneously polishing a front and back surface of said semiconductor wafer by driving said carrier plate to make a circular motion associated with no rotation on its own axis within a plane parallel with a surface of said carrier plate between a pair of polishing members disposed to face to each other, by using an abrasive body with a semiconductor wafer sink rate different in polishing from that of an abrasive body for one of a polishing member on an upper surface plate and a polishing member on a lower surface plate so as to simultaneously polish both the front and rear surfaces of the semiconductor wafer, or differentiating by differentiating the rotating speed of the upper surface plate from that of the lower surface plate.Type: GrantFiled: September 14, 2009Date of Patent: October 9, 2012Assignee: Sumitomo Mitsubishi Silicon CorporationInventors: Toru Taniguchi, Etsuro Morita, Satoshi Matagawa, Seiji Harada, Isoroku Ono, Mitsuhiro Endo, Fumihiko Yoshida
-
Publication number: 20120200147Abstract: An input rod is operated by a brake pedal to introduce the air into a variable-pressure chamber through a control valve to propel a power piston, thereby advancing a primary piston to generate a brake fluid pressure in a master cylinder. A part of the reaction force from the fluid pressure is transmitted to the input rod through a reaction member. The primary piston is provided with an idle stroke in which no fluid pressure is generated, and the reaction force to be transmitted to a plunger is limited by a reaction force adjusting spring. In the region of the idle stroke, a fluid pressure is supplied to a wheel cylinder through a fluid pressure control unit to perform regenerative cooperative control, and a reaction force from a reaction spring is applied to the input rod.Type: ApplicationFiled: February 6, 2012Publication date: August 9, 2012Inventors: Mitsuhiro Endo, Hiroshi Owada
-
Patent number: 7763545Abstract: In a semiconductor device manufacturing method having the etching step of an electrode material film constituting a capacitor using ferroelectric substance or high- dielectric substance, etching of a conductive film that acts as an electrode of the capacitor formed over a semiconductor substrate is carried out in an atmosphere containing bromine, and a heating temperature of the semiconductor substrate is set in a range of 300° C. to 600° C., otherwise etching of at least the conductive film is carried out in an atmosphere to which only hydrogen bromide and oxygen are supplied from an outside.Type: GrantFiled: February 25, 2003Date of Patent: July 27, 2010Assignees: Fujitsu Semiconductor Limited, ULVAC, Inc.Inventors: Hideaki Kikuchi, Genichi Komuro, Mitsuhiro Endo, Naoki Hirai
-
Publication number: 20100009605Abstract: A method of manufacturing a semiconductor wafer, including a step of differentiating the glossiness of a front surface from that of a rear surface of the wafer by holding the semiconductor wafer in a wafer holding hole formed in a carrier plate, and simultaneously polishing a front and back surface of said semiconductor wafer by driving said carrier plate to make a circular motion associated with no rotation on its own axis within a plane parallel with a surface of said carrier plate between a pair of polishing members disposed to face to each other, by using an abrasive body with a semiconductor wafer sink rate different in polishing from that of an abrasive body for one of a polishing member on an upper surface plate and a polishing member on a lower surface plate so as to simultaneously polish both the front and rear surfaces of the semiconductor wafer, or differentiating by differentiating the rotating speed of the upper surface plate from that of the lower surface plate.Type: ApplicationFiled: September 14, 2009Publication date: January 14, 2010Inventors: Toru Taniguchi, Etsuro Morita, Satoshi Matagawa, Seiji Harada, Isoroku Ono, Mitsuhiro Endo, Fumihiko Yoshida
-
Patent number: 7589023Abstract: A method of manufacturing a semiconductor wafer, comprising the step of differentiating the glossiness of a front surface from that of a rear surface of the wafer by using an abrasive cloth with a semiconductor wafer sink rate different in polishing from that of the other abrasive cloth for one of a polishing cloth (14) on an upper surface plate (12) and a polishing cloth (15) on a lower surface plate (13) so as to simultaneously polish both the front and rear surfaces of the semiconductor wafer (W), or differentiating by differentiating the rotating speed of the upper surface plate from that of the lower surface plate.Type: GrantFiled: April 23, 2001Date of Patent: September 15, 2009Assignee: Sumitomo Mitsubishi Silicon CorporationInventors: Toru Taniguchi, Etsuro Morita, Satoshi Matagawa, Seiji Harada, Isoroku Ono, Mitsuhiro Endo, Fumihiko Yoshida
-
Publication number: 20080026539Abstract: An etching technique suitable for miniaturization is provided. An inorganic film is formed on an object to be subjected, the object having a lower electrode film, a dielectric film, and an upper electrode film laminated in that order on a substrate. A patterned organic resist film is disposed on the surface of the inorganic film. The inorganic film, upper electrode film, and the dielectric film are etched using the organic resist film as a mask, and then, the organic resist film is removed with the gas used to etch the lower electrode film; and the lower electrode film is etched using the inorganic film as a mask that has been exposed. Since the film serving as a mask is not re-formed, a fine pattern can be produced with good precision.Type: ApplicationFiled: July 20, 2007Publication date: January 31, 2008Applicant: ULVAC, INC.Inventors: Yutaka Kokaze, Masahisa Ueda, Mitsuhiro Endo, Koukou Suu
-
Patent number: 7096775Abstract: In a pneumatic booster, a front shell and a rear shell are connected by means of a rod. A stud bolt on one end of the rod extends through the front shell to the outside, and a support plate fitted around the stud bolt is engaged with the rod and abutted against an inner surface of the front shell. A seal member is provided in an annular groove formed in the support plate. A projection is formed in the support plate. When the support plate is reversely mounted on the stud bolt, the projection is abutted against the front shell, and the seal member is unable to provide a seal between the stud bolt and the front shell. In a leak inspection, air is flowed into a constant-pressure chamber through a cut portion formed in a distal end of the projection, to thereby detect reverse mounting of the support plate.Type: GrantFiled: November 22, 2004Date of Patent: August 29, 2006Assignee: Hitachi, Ltd.Inventors: Mitsuhiro Endo, Shuzo Watanabe