Patents by Inventor Mitsuhiro Kishimi

Mitsuhiro Kishimi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130224575
    Abstract: A lithium ion secondary battery containing a negative electrode active material containing Si and O as constituent elements and exhibiting excellent charge-discharge cycle characteristics. The lithium ion secondary battery has a positive electrode having a positive electrode material mixture layer, a negative electrode, a separator and a nonaqueous electrolyte containing at least an electrolyte salt and an organic solvent, where the negative electrode has a negative electrode material mixture layer containing a negative electrode active material containing Si and O as constituent elements (the atomic ratio x of O to Si is 0.5?x?1.5). The nonaqueous electrolyte contains the electrolyte salt at a concentration exceeding a concentration at which conductivity in the nonaqueous electrolyte containing the electrolyte salt and the organic solvent is maximized, and the conductivity at 25° C. is 6.5 to 16 mS/cm2.
    Type: Application
    Filed: February 28, 2012
    Publication date: August 29, 2013
    Applicant: HITACHI, LTD.
    Inventors: Eri Kojima, Takahiro Furutani, Mitsuhiro Kishimi
  • Publication number: 20130183578
    Abstract: There is provided a positive electrode material used for a positive electrode of a non-aqueous secondary battery. The positive electrode material includes: a positive electrode active material; and at least one selected from the group consisting of (i) a compound having two or more epoxy groups, (ii) a ring-cleavage form of the compound in which at least one of the epoxy groups is opened, and (iii) a polymer of the compound.
    Type: Application
    Filed: August 25, 2011
    Publication date: July 18, 2013
    Applicant: HITACHI MAXELL, LTD.
    Inventors: Masayuki Oya, Mitsuhiro Kishimi
  • Publication number: 20130071758
    Abstract: The nonaqueous electrolyte for an electrochemical device of the present invention includes at least one selected from an imide compound represented by the general formula (1) and an imide compound represented by the general formula (2): where R1 is an organic residue or an F-containing organic residue, X1 and X2 are each H, F, an organic residue or an F-containing organic residue, and X1 and X2 may be the same or different from each other; and where R2 is an organic residue or an F-containing organic residue, and H of a benzene ring may be partially or entirely replaced with F.
    Type: Application
    Filed: September 13, 2012
    Publication date: March 21, 2013
    Applicant: HITACHI MAXELL ENERGY, LTD.
    Inventors: Masayuki OYA, Mitsuhiro KISHIMI, Fusaji KITA
  • Publication number: 20130065125
    Abstract: The electrode for a lithium ion secondary battery of the present invention has an electrode mixture layer containing carbon nanotubes as a conductive auxiliary agent and deoxyribonucleic acid as a dispersant for the carbon nanotubes, and the content of the carbon nanotubes in the electrode mixture layer is 0.001 to 5 parts by mass with respect to 100 parts by mass of active material particles. The lithium ion secondary battery of the present invention has the electrode of the invention as its positive electrode and/or negative electrode. The electrode of the invention can be produced by a producing method of the invention of forming the electrode mixture layer from an electrode mixture-containing composition prepared using a dispersion including carbon nanotubes and deoxyribonucleic acid.
    Type: Application
    Filed: September 13, 2011
    Publication date: March 14, 2013
    Inventors: Yuko Sawaki, Mitsuhiro Kishimi
  • Publication number: 20120321948
    Abstract: A positive electrode material that can form a positive electrode mixture containing composition with reduced changes over time and high productivity, a manufacturing method thereof, a non-aqueous rechargeable battery less likely to swell and having a high storage characteristic during storage at high temperatures, and a positive electrode that can form the battery are provided. The object is solved by providing a positive electrode material having a coating layer of an organic silane compound on a surface of a positive electrode active material made of a lithium nickel composite oxide represented by the general compositional formula (1): Li1+xMO2 where ?0.5?x?0.5, M represents a group of at least two elements including at least one of Mn and Co and Ni, and 20?a?100 and 50?a+b+c?100 when the ratios (mol %) of Ni, Mn, and Co in the elements forming M are a, b, and c, respectively.
    Type: Application
    Filed: January 13, 2011
    Publication date: December 20, 2012
    Inventors: Masayuki Oya, Mitsuhiro Kishimi, Satoshi Kono
  • Publication number: 20120156558
    Abstract: An electrode for a lithium ion secondary battery of the present invention includes an electrode material mixture layer containing oxide particles, active material particles capable of absorbing and desorbing Li, and a resin binder, wherein the oxide particles have an average particle size of primary particles of 1 to 20 nm, and have no peak or have a width at half height of the highest intensity peak of 1.0° or more within the range of 2?=20 to 70° in a powder X-ray diffraction spectrum, and the ratio of the oxide particles is 0.1 to 10 mass % when the total of the active material particles and the oxide particles is taken as 100 mass %. Further, a lithium ion secondary battery of the present invention includes the above-described electrode for a lithium ion secondary battery of the present invention.
    Type: Application
    Filed: September 9, 2011
    Publication date: June 21, 2012
    Inventors: Yuko SAWAKI, Mitsuhiro KISHIMI
  • Publication number: 20110269018
    Abstract: An electrode for an electrochemical device of the present invention includes an electrode mixture layer that includes a lithium-containing composite oxide expressed by the general composition formula (1): Li1+xMO2 as an active material, where x satisfies ?0.3?x?0.3 and M represents an element group including Ni, Mn, and Mg. The relationships 70?a?97, 0.5<b<30, 0.5<c<30, ?10<b?c<10, and ?8?(b?c)/c?8 are established, where a, b, and c represent the ratios of the number of elements of Ni, Mn, and Mg in the element group M to the total number of elements in the element group M, respectively, in units of mol %. The Ni has an average valence of 2.5 to 3.2, the Mn has an average valence of 3.5 to 4.2, and the Mg has an average valence of 1.8 to 2.2.
    Type: Application
    Filed: June 17, 2010
    Publication date: November 3, 2011
    Inventors: Satoshi Kono, Mitsuhiro Kishimi, Masayuki Oya
  • Publication number: 20110171529
    Abstract: An electrode active material includes particles of a lithium-containing composite oxide represented by the general compositional formula: Li1+xMO2, where ?0.15?x?0.15, and M represents an element group of three or more elements including at least Ni, Co and Mn, wherein the ratios of Ni, Co and Mn to the total elements constituting M satisfy 45?a?90, 5?b?30, 5?c?30 and 10?b+c?55, where the ratios of Ni, Co and Mn are represented by a, b and c, respectively, in units of mol %, the average valence A of Ni in the whole particles is 2.2 to 3.2, the valence B of Ni on the surface of the particles has the relationship: B<A, the average valence C of Co in the whole particles is 2.5 to 3.2, the valence D of Co on the surface of the particles has the relationship: D<C, and the average valence of Mn in the whole particles is 3.5 to 4.2.
    Type: Application
    Filed: March 10, 2010
    Publication date: July 14, 2011
    Inventors: Satoshi Kono, Mitsuhiro Kishimi, Atsushi Hatakeyama
  • Publication number: 20110052987
    Abstract: A nonaqueous electrolyte battery of the present invention includes a positive electrode having a positive active material capable of intercalating and deintercalating a lithium ion, a negative electrode having a negative active material capable of intercalating and deintercalating a lithium ion, a separator interposed between the positive electrode and the negative electrode, and a nonaqueous electrolyte. The heat generation starting temperature of the positive electrode is 180° C. or higher. The separator includes heat-resistant fine particles and a thermoplastic resin. The proportion of particles with a particle size of 0.2 ?m or less in the heat-resistant fine particles is 10 vol % or less and the proportion of particles with a particle size of 2 ?m or more in the heat-resistant fine particles is 10 vol % or less. The separator effects a shutdown in the range of 100° C. to 150° C.
    Type: Application
    Filed: September 30, 2008
    Publication date: March 3, 2011
    Inventors: Hideaki Katayama, Mitsuhiro Kishimi, Yoshinori Sato, Yasutaka Kuroki, Toshiyuki Edamoto
  • Patent number: 7332245
    Abstract: An electrode according to the present invention employs the metal plate having the specified structure as the electrode substrate. The metal plate 51 has a plurality of protuberances 54 that are alternately protruded on both front and back sides thereof. Each of the protuberances 54 is formed in a pyramid shape in which an area of upper bottom 52 (a protruded part) thereof is smaller than that of a lower bottom 53. The upper bottom 52 in each of the protuberances 54 is formed with an aperture 56 having blanking burr 55 blinked in a substantially pyramid shape along a direction from the upper bottom 52 to the lower bottom 53 so that an opening 52a of the upper bottom part is formed in a polygon shape. Further, the size of each portions is set in accordance with c>s?0.1 mm2 and 0.2?h/d?0.
    Type: Grant
    Filed: June 20, 2003
    Date of Patent: February 19, 2008
    Assignee: Hitachi Maxell Ltd.
    Inventors: Mitsuhiro Kishimi, Hiroshi Fukunaga
  • Patent number: 6994902
    Abstract: A metallic porous body includes a number of protrusions formed on obverse and reverse sides of a metal sheet so as to protrude alternately with one another; each of the protrusions being formed into an truncated-shape wherein an opening portion punched out in the direction from the upper-side bottom to the lower-side bottom is formed in the upper-side bottom of each protrusion, and a vertical distance (d) between the upper-side bottom on the obverse side and the upper-side bottom on the reverse side, and a height (e) of a punched portion have a relation: 0.3<e/d<0.9, thereby attaining a metallic porous body without a burr or a edged convex portion on its outside surface, with a large number of fine pores arranged at fine pitch and a light-weight and robust skeleton.
    Type: Grant
    Filed: December 17, 2003
    Date of Patent: February 7, 2006
    Assignees: Hitachi Maxell, Ltd., Kushibe Manufacturing Co., Ltd.
    Inventors: Hiroshi Fukunaga, Mitsuhiro Kishimi, Masao Morishima, Toshihiko Yamashita
  • Publication number: 20040142201
    Abstract: A metallic porous body includes a number of protrusions formed on obverse and reverse sides of a metal sheet so as to protrude alternately with one another; each of the protrusions being formed into an truncated-shape wherein an opening portion punched out in the direction from the upper-side bottom to the lower-side bottom is formed in the upper-side bottom of each protrusion, and a vertical distance (d) between the upper-side bottom on the obverse side and the upper-side bottom on the reverse side, and a height (e) of a punched portion have a relation: 0.3<e/d<0.9, thereby attaining a metallic porous body without a burr or a edged convex portion on its outside surface, with a large number of fine pores arranged at fine pitch and a light-weight and robust skeleton.
    Type: Application
    Filed: December 17, 2003
    Publication date: July 22, 2004
    Inventors: Hiroshi Fukunaga, Mitsuhiro Kishimi, Masao Morishima, Toshihiko Yamashita
  • Publication number: 20040026239
    Abstract: An electrode according to the present invention employs the metal plate having the specified structure as the electrode substrate. The metal plate 51 has a plurality of protuberances 54 that are alternately protruded on both front and back sides thereof. Each of the protuberances 54 is formed in a pyramid shape in which an area of upper bottom 52 (a protruded part) thereof is smaller than that of a lower bottom 53. The upper bottom 52 in each of the protuberances 54 is formed with an aperture 56 having blanking burr 55 blinked in a substantially pyramid shape along a direction from the upper bottom 52 to the lower bottom 53 so that an opening 52a of the upper bottom part is formed in a polygon shape. Further, the size of each portions is set in accordance with c>s≧0.1 mm2 and 0.2≦h/d≦0.
    Type: Application
    Filed: June 20, 2003
    Publication date: February 12, 2004
    Inventors: Mitsuhiro Kishimi, Hiroshi Fukunaga
  • Patent number: D507778
    Type: Grant
    Filed: June 25, 2004
    Date of Patent: July 26, 2005
    Assignees: Hitachi Maxell Ltd., Kushibe Manufacturing Co., Ltd.
    Inventors: Hiroshi Fukunaga, Mitsuhiro Kishimi, Masao Morishima, Toshihiko Yamashita