Patents by Inventor Mitsuru Kinoshita

Mitsuru Kinoshita has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190263179
    Abstract: Provided is a steel cord for reinforcing rubber articles, which can prevent a reduction in the strength of the steel cord caused by twisting steel filaments, and a tire and a crawler using the steel cord. Provided is a steel cord 1 for reinforcing rubber articles formed by twisting a plurality of sheath strands 3 are twisted around a core strand 2, and the core strand 2 comprises: a core composed of two core filaments 2a aligned in parallel without being twisted; and at least one sheath composed of a plurality of sheath filaments 2b twisted around the core, and a diameter dc of the core filament 2a and a diameter ds of the sheath filament 2b satisfy the following expression (1): dc<ds ??(1) and the tensile strength T (MPa) of the core filament 2a satisfies the relationship represented by the following expression (2): T<3650?17000×(dc?0.15)2 ??(2).
    Type: Application
    Filed: May 14, 2019
    Publication date: August 29, 2019
    Inventors: Kiyoshi IKEHARA, Mitsuru Kinoshita
  • Patent number: 9805980
    Abstract: A semiconductor device manufacturing method comprising the steps of providing a matrix substrate having a main surface with plural device areas formed thereon, fixing plural semiconductor chips to the plural device areas respectively, then sealing the plural semiconductor chips all together with resin to form a block sealing member, dividing the block sealing member and the matrix substrate for each of the device areas by dicing, thereafter rubbing a surface of each of the diced sealing member portions with a brush, then storing semiconductor devices formed by the dicing once into pockets respectively of a tray, and conveying the semiconductor devices each individually from the tray. Since the substrate dividing work after block molding is performed by dicing while vacuum-chucking the surface of the block sealing member, the substrate division can be done without imposing any stress on an external terminal mounting surface of the matrix substrate.
    Type: Grant
    Filed: January 13, 2016
    Date of Patent: October 31, 2017
    Assignee: Renesas Electronics Corporation
    Inventors: Tadashi Munakata, Shingo Oosaka, Mitsuru Kinoshita, Yoshihiko Yamaguchi, Noriyuki Takahashi
  • Publication number: 20160133521
    Abstract: A semiconductor device manufacturing method comprising the steps of providing a matrix substrate having a main surface with plural device areas formed thereon, fixing plural semiconductor chips to the plural device areas respectively, then sealing the plural semiconductor chips all together with resin to form a block sealing member, dividing the block sealing member and the matrix substrate for each of the device areas by dicing, thereafter rubbing a surface of each of the diced sealing member portions with a brush, then storing semiconductor devices formed by the dicing once into pockets respectively of a tray, and conveying the semiconductor devices each individually from the tray. Since the substrate dividing work after block molding is performed by dicing while vacuum-chucking the surface of the block sealing member, the substrate division can be done without imposing any stress on an external terminal mounting surface of the matrix substrate.
    Type: Application
    Filed: January 13, 2016
    Publication date: May 12, 2016
    Inventors: Tadashi Munakata, Shingo Oosaka, Mitsuru Kinoshita, Yoshihiko Yamagushi, Noriyuki Takahashi
  • Publication number: 20150004755
    Abstract: A semiconductor device manufacturing method comprising the steps of providing a matrix substrate having a main surface with plural device areas formed thereon, fixing plural semiconductor chips to the plural device areas respectively, then sealing the plural semiconductor chips all together with resin to form a block sealing member, dividing the block sealing member and the matrix substrate for each of the device areas by dicing, thereafter rubbing a surface of each of the diced sealing member portions with a brush, then storing semiconductor devices formed by the dicing once into pockets respectively of a tray, and conveying the semiconductor devices each individually from the tray. Since the substrate dividing work after block molding is performed by dicing while vacuum-chucking the surface of the block sealing member, the substrate division can be done without imposing any stress on an external terminal mounting surface of the matrix substrate.
    Type: Application
    Filed: September 18, 2014
    Publication date: January 1, 2015
    Inventors: Tadashi Munakata, Shingo Oosaka, Mitsuru Kinoshita, Yoshihiko Yamaguchi, Noriyuki Takahashi
  • Patent number: 8877613
    Abstract: A semiconductor device manufacturing method comprising the steps of providing a matrix substrate having a main surface with plural device areas formed thereon, fixing plural semiconductor chips to the plural device areas respectively, then sealing the plural semiconductor chips all together with resin to form a block sealing member, dividing the block sealing member and the matrix substrate for each of the device areas by dicing, thereafter rubbing a surface of each of the diced sealing member portions with a brush, then storing semiconductor devices formed by the dicing once into pockets respectively of a tray, and conveying the semiconductor devices each individually from the tray. Since the substrate dividing work after block molding is performed by dicing while vacuum-chucking the surface of the block sealing member, the substrate division can be done without imposing any stress on an external terminal mounting surface of the matrix substrate.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: November 4, 2014
    Assignees: Renesas Electronics Corporation, Renesas Northern Japan Semiconductor, Inc.
    Inventors: Tadashi Munakata, Shingo Oosaka, Mitsuru Kinoshita, Yoshihiko Yamaguchi, Noriyuki Takahashi
  • Publication number: 20110020984
    Abstract: A semiconductor device manufacturing method comprising the steps of providing a matrix substrate having a main surface with plural device areas formed thereon, fixing plural semiconductor chips to the plural device areas respectively, then sealing the plural semiconductor chips all together with resin to form a block sealing member, dividing the block sealing member and the matrix substrate for each of the device areas by dicing, thereafter rubbing a surface of each of the diced sealing member portions with a brush, then storing semiconductor devices formed by the dicing once into pockets respectively of a tray, and conveying the semiconductor devices each individually from the tray. Since the substrate dividing work after block molding is performed by dicing while vacuum-chucking the surface of the block sealing member, the substrate division can be done without imposing any stress on an external terminal mounting surface of the matrix substrate.
    Type: Application
    Filed: September 30, 2010
    Publication date: January 27, 2011
    Inventors: Tadashi MUNAKATA, Shingo OOSAKA, Mitsuru KINOSHITA, Yoshihiko YAMAGUCHI, Noriyuki TAKAHASHI
  • Patent number: 7816185
    Abstract: A semiconductor device manufacturing method comprising the steps of providing a matrix substrate having a main surface with plural device areas formed thereon, fixing plural semiconductor chips to the plural device areas respectively, then sealing the plural semiconductor chips all together with resin to form a block sealing member, dividing the block sealing member and the matrix substrate for each of the device areas by dicing, thereafter rubbing a surface of each of the diced sealing member portions with a brush, then storing semiconductor devices formed by the dicing once into pockets respectively of a tray, and conveying the semiconductor devices each individually from the tray. Since the substrate dividing work after block molding is performed by dicing while vacuum-chucking the surface of the block sealing member, the substrate division can be done without imposing any stress on an external terminal mounting surface of the matrix substrate.
    Type: Grant
    Filed: August 3, 2009
    Date of Patent: October 19, 2010
    Assignees: Renesas Electronics Corporation, Renesas Northern Japan Semiconductor, Inc.
    Inventors: Tadashi Munakata, Shingo Oosaka, Mitsuru Kinoshita, Yoshihiko Yamaguchi, Noriyuki Takahashi
  • Publication number: 20090291529
    Abstract: A semiconductor device manufacturing method comprising the steps of providing a matrix substrate having a main surface with plural device areas formed thereon, fixing plural semiconductor chips to the plural device areas respectively, then sealing the plural semiconductor chips all together with resin to form a block sealing member, dividing the block sealing member and the matrix substrate for each of the device areas by dicing, thereafter rubbing a surface of each of the diced sealing member portions with a brush, then storing semiconductor devices formed by the dicing once into pockets respectively of a tray, and conveying the semiconductor devices each individually from the tray. Since the substrate dividing work after block molding is performed by dicing while vacuum-chucking the surface of the block sealing member, the substrate division can be done without imposing any stress on an external terminal mounting surface of the matrix substrate.
    Type: Application
    Filed: August 3, 2009
    Publication date: November 26, 2009
    Inventors: TADASHI MUNAKATA, Shingo Oosaka, Mitsuru Kinoshita, Yoshihiko Yamaguchi, Noriyuki Takahashi
  • Patent number: 7604727
    Abstract: An electroplating method calls for immersing a body to be plated in a plating solution containing tin and bismuth to form a tin-bismuth alloy skin layer on surfaces of the body. The plating is carried out such that a solid tin metal and a solid bismuth metal placed in the plating solution are connected to an anode and the body to be plated is connected to a cathode of a power supply.
    Type: Grant
    Filed: January 17, 2008
    Date of Patent: October 20, 2009
    Assignee: Renesas Technology Corp.
    Inventors: Mitsuru Kinoshita, Tsugihiko Hirano, Katsunori Takahashi
  • Patent number: 7579216
    Abstract: A semiconductor device manufacturing method comprising the steps of providing a matrix substrate having a main surface with plural device areas formed thereon, fixing plural semiconductor chips to the plural device areas respectively, then sealing the plural semiconductor chips all together with resin to form a block sealing member, dividing the block sealing member and the matrix substrate for each of the device areas by dicing, thereafter rubbing a surface of each of the diced sealing member portions with a brush, then storing semiconductor devices formed by the dicing once into pockets respectively of a tray, and conveying the semiconductor devices each individually from the tray. Since the substrate dividing work after block molding is performed by dicing while vacuum-chucking the surface of the block sealing member, the substrate division can be done without imposing any stress on an external terminal mounting surface of the matrix substrate.
    Type: Grant
    Filed: May 12, 2008
    Date of Patent: August 25, 2009
    Assignees: Renesas Technology Corp., Renesas Northern Japan Semiconductor, Inc.
    Inventors: Tadashi Munakata, Shingo Oosaka, Mitsuru Kinoshita, Yoshihiko Yamaguchi, Noriyuki Takahashi
  • Publication number: 20080286902
    Abstract: A semiconductor device manufacturing method comprising the steps of providing a matrix substrate having a main surface with plural device areas formed thereon, fixing plural semiconductor chips to the plural device areas respectively, then sealing the plural semiconductor chips all together with resin to form a block sealing member, dividing the block sealing member and the matrix substrate for each of the device areas by dicing, thereafter rubbing a surface of each of the diced sealing member portions with a brush, then storing semiconductor devices formed by the dicing once into pockets respectively of a tray, and conveying the semiconductor devices each individually from the tray. Since the substrate dividing work after block molding is performed by dicing while vacuum-chucking the surface of the block sealing member, the substrate division can be done without imposing any stress on an external terminal mounting surface of the matrix substrate.
    Type: Application
    Filed: May 12, 2008
    Publication date: November 20, 2008
    Inventors: Tadashi MUNAKATA, Shingo OOSAKA, Mitsuru KINOSHITA, Yoshihiko YAMAGUCHI, Noriyuki TAKAHASHI
  • Patent number: 7384820
    Abstract: A semiconductor device manufacturing method comprising the steps of providing a matrix substrate having a main surface with plural device areas formed thereon, fixing plural semiconductor chips to the plural device areas respectively, then sealing the plural semiconductor chips all together with resin to form a block sealing member, dividing the block sealing member and the matrix substrate for each of the device areas by dicing, thereafter rubbing a surface of each of the diced sealing member portions with a brush, then storing semiconductor devices formed by the dicing once into pockets respectively of a tray, and conveying the semiconductor devices each individually from the tray. Since the substrate dividing work after block molding is performed by dicing while vacuum-chucking the surface of the block sealing member, the substrate division can be done without imposing any stress on an external terminal mounting surface of the matrix substrate.
    Type: Grant
    Filed: February 24, 2006
    Date of Patent: June 10, 2008
    Assignees: Renesas Technology Corp., Renesas Northern Japan Semiconductor, Inc.
    Inventors: Tadashi Munakata, Shingo Oosaka, Mitsuru Kinoshita, Yoshihiko Yamaguchi, Noriyuki Takahashi
  • Publication number: 20080132005
    Abstract: An electroplating method calls for immersing a body to be plated in a plating solution containing tin and bismuth to form a tin-bismuth alloy skin layer on surfaces of the body. The plating is carried out such that a solid tin metal and a solid bismuth metal placed in the plating solution are connected to an anode and the body to be plated is connected to a cathode of a power supply.
    Type: Application
    Filed: January 17, 2008
    Publication date: June 5, 2008
    Inventors: Mitsuru Kinoshita, Tsugihiko Hirano, Katsunori Takahashi
  • Patent number: 7323097
    Abstract: An electroplating method calls for immersing a body to be plated in a plating solution containing tin and bismuth to form a tin-bismuth alloy skin layer on surfaces of the body. The plating is carried out such that a solid tin metal and a solid bismuth metal placed in the plating solution are connected to an anode and the body to be plated is connected to a cathode of a power supply.
    Type: Grant
    Filed: December 3, 2004
    Date of Patent: January 29, 2008
    Assignee: Renesas Technology Corp.
    Inventors: Mitsuru Kinoshita, Tsugihiko Hirano, Katsunori Takahashi
  • Publication number: 20060141677
    Abstract: A semiconductor device manufacturing method comprising the steps of providing a matrix substrate having a main surface with plural device areas formed thereon, fixing plural semiconductor chips to the plural device areas respectively, then sealing the plural semiconductor chips all together with resin to form a block sealing member, dividing the block sealing member and the matrix substrate for each of the device areas by dicing, thereafter rubbing a surface of each of the diced sealing member portions with a brush, then storing semiconductor devices formed by the dicing once into pockets respectively of a tray, and conveying the semiconductor devices each individually from the tray. Since the substrate dividing work after block molding is performed by dicing while vacuum-chucking the surface of the block sealing member, the substrate division can be done without imposing any stress on an external terminal mounting surface of the matrix substrate.
    Type: Application
    Filed: February 24, 2006
    Publication date: June 29, 2006
    Inventors: Tadashi Munakata, Shingo Oosaka, Mitsuru Kinoshita, Yoshihiko Yamaguchi, Noriyuki Takahashi
  • Patent number: 7033857
    Abstract: A semiconductor device manufacturing method comprising the steps of providing a matrix substrate having a main surface with plural device areas formed thereon, fixing plural semiconductor chips to the plural device areas respectively, then sealing the plural semiconductor chips all together with resin to form a block sealing member, dividing the block sealing member and the matrix substrate for each of the device areas by dicing, thereafter rubbing a surface of each of the diced sealing member portions with a brush, then storing semiconductor devices formed by the dicing once into pockets respectively of a tray, and conveying the semiconductor devices each individually from the tray. Since the substrate dividing work after block molding is performed by dicing while vacuum-chucking the surface of the block sealing member, the substrate division can be done without imposing any stress on an external terminal mounting surface of the matrix substrate.
    Type: Grant
    Filed: June 17, 2003
    Date of Patent: April 25, 2006
    Assignees: Renesas Technology Corp., Renesas Northern Japan Semiconductor, Inc.
    Inventors: Tadashi Munakata, Shingo Oosaka, Mitsuru Kinoshita, Yoshihiko Yamaguchi, Noriyuki Takahashi
  • Publication number: 20050121331
    Abstract: An electroplating method calls for immersing a body to be plated in a plating solution containing tin and bismuth to form a tin-bismuth alloy skin layer on surfaces of the body. The plating is carried out such that a solid tin metal and a solid bismuth metal placed in the plating solution are connected to an anode and the body to be plated is connected to a cathode of a power supply.
    Type: Application
    Filed: December 3, 2004
    Publication date: June 9, 2005
    Inventors: Mitsuru Kinoshita, Tsugihiko Hirano, Katsunori Takahashi
  • Publication number: 20040038510
    Abstract: A semiconductor device manufacturing method comprising the steps of providing a matrix substrate having a main surface with plural device areas formed thereon, fixing plural semiconductor chips to the plural device areas respectively, then sealing the plural semiconductor chips all together with resin to form a block sealing member, dividing the block sealing member and the matrix substrate for each of the device areas by dicing, thereafter rubbing a surface of each of the diced sealing member portions with a brush, then storing semiconductor devices formed by the dicing once into pockets respectively of a tray, and conveying the semiconductor devices each individually from the tray. Since the substrate dividing work after block molding is performed by dicing while vacuum-chucking the surface of the block sealing member, the substrate division can be done without imposing any stress on an external terminal mounting surface of the matrix substrate.
    Type: Application
    Filed: June 17, 2003
    Publication date: February 26, 2004
    Applicants: Hitachi, Ltd., Renesas Northern Japan Semiconductor, Inc.
    Inventors: Tadashi Munakata, Shingo Oosaka, Mitsuru Kinoshita, Yoshihiko Yamaguchi, Noriyuki Takahashi
  • Patent number: 4938015
    Abstract: A steel cord for the reinforcement of rubber products and the like has an open twisted structure comprised of 3 to 6 steel filaments each having an ellipsoidally helical shape, and has a particular tensile elongation under a load of 5 kg.
    Type: Grant
    Filed: July 7, 1989
    Date of Patent: July 3, 1990
    Assignee: Bridgestone Bekaert Steel Cord Co., Ltd.
    Inventor: Mitsuru Kinoshita