Patents by Inventor Mitsuru Matsui

Mitsuru Matsui has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240121637
    Abstract: A wireless communication monitoring system for monitoring a hardware failure of a wireless communication unit of a wireless communication device using a remote monitoring control device, in which the wireless communication device transmits or receives a predetermined radio signal to or from a monitoring device added or attached to the host device to perform a life and death check for checking an operation, and the remote monitoring control device detects a hardware failure of the wireless communication unit of the wireless communication device on the basis of a result of the life and death check received from the wireless communication device. This makes it possible to detect a failure that cannot be detected from information obtained from a device state request to a wireless communication device of the related art.
    Type: Application
    Filed: February 17, 2021
    Publication date: April 11, 2024
    Applicant: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Akira MATSUSHITA, Mitsuru NISHINO, Munehiro MATSUI, Masaki SHIMA, Koichi HARADA, Hiroki SHIBAYAMA, Fumihiro YAMASHITA
  • Patent number: 11438137
    Abstract: An encryption device divides a message M into blocks of b bits, so as to generate data M[1], . . . , data M[m]. The encryption device sets data S0 of n=b+c bits to a variable S, updates the variable S by calculating a block cipher E using as input the variable S, then updates the variable S by calculating an exclusive OR using as input the variable S that has been updated and data X[i] that is data M[i] to which a bit string of c bits is added, and generates data C[i] by extracting b bits from the variable S that has been updated, for each integer i=1, . . . , m in ascending order. The encryption device generates a ciphertext C of the message M by concatenating the respective pieces of the data C[i] for each integer i=1, . . . , m. The encryption device extracts t bits from the variable S as an authenticator T, where t is an integer of 1 or greater.
    Type: Grant
    Filed: September 1, 2017
    Date of Patent: September 6, 2022
    Assignee: Mitsubishi Electric Corporation
    Inventors: Yusuke Naito, Mitsuru Matsui, Daisuke Suzuki
  • Publication number: 20200186328
    Abstract: An encryption device divides a message M into blocks of b bits, so as to generate data M[1], . . . , data M[m]. The encryption device sets data S0 of n=b+c bits to a variable S, updates the variable S by calculating a block cipher E using as input the variable S, then updates the variable S by calculating an exclusive OR using as input the variable S that has been updated and data X[i] that is data M[i] to which a bit string of c bits is added, and generates data C[i] by extracting b bits from the variable S that has been updated, for each integer i=1, . . . , m in ascending order. The encryption device generates a ciphertext C of the message M by concatenating the respective pieces of the data C[i] for each integer i=1, . . . , m. The encryption device extracts t bits from the variable S as an authenticator T, where t is an integer of 1 or greater.
    Type: Application
    Filed: September 1, 2017
    Publication date: June 11, 2020
    Applicant: Mitsubishi Electric Corporation
    Inventors: Yusuke NAITO, Mitsuru MATSUI, Daisuke SUZUKI
  • Patent number: 8948377
    Abstract: The object is to enable cipher communication even when a cipher key in a one-time pad cipher (Vernam cipher) is running short. A one-time pad encrypting part encrypts communication data by the one-time pad cipher by sequentially using part of a one-time pad cipher key stored in a one-time pad cipher key storage part, to generate encrypted data. A block-encrypting part encrypts communication data by a block cipher by using a block-cipher key stored in a block-cipher key storage part, to generate encrypted data. An encryption control part controls whether the communication data is to be encrypted by the one-time pad encrypting part, or by the block-encrypting part, depending on a remaining bit count of the one-time pad cipher key stored in the one-time pad cipher key storage part.
    Type: Grant
    Filed: August 24, 2010
    Date of Patent: February 3, 2015
    Assignee: Mitsubishi Electric Corporation
    Inventors: Yoichi Shibata, Hirosato Tsuji, Mitsuru Matsui
  • Publication number: 20130142328
    Abstract: The object is to enable cipher communication even when a cipher key in a one-time pad cipher (Vernam cipher) is running short. A one-time pad encrypting part encrypts communication data by the one-time pad cipher by sequentially using part of a one-time pad cipher key stored in a one-time pad cipher key storage part, to generate encrypted data. A block-encrypting part encrypts communication data by a block cipher by using a block-cipher key stored in a block-cipher key storage part, to generate encrypted data. An encryption control part controls whether the communication data is to be encrypted by the one-time pad encrypting part, or by the block-encrypting part, depending on a remaining bit count of the one-time pad cipher key stored in the one-time pad cipher key storage part.
    Type: Application
    Filed: August 24, 2010
    Publication date: June 6, 2013
    Applicant: Mitsubishi Electric Corporation
    Inventors: Yoichi Shibata, Hirosato Tsuji, MItsuru Matsui
  • Patent number: 8443020
    Abstract: A pseudo-random number generator 100 generates a pseudo-random number by the following operation. At C.2, S1[B41] is determined from B41 set in a second internal memory, and S2[B40] is determined from B40. Then, R[J] is generated from S1[I], S1[B41], and S2[B40]. At C.3, S1[I] is newly generated based on S1[B41] and S2[B40]. At C.4, B4 is updated from S2(I). In the above, the relationship between R[J] and S2(I) is cut off, which makes difficult to estimate S2(I) from R[J], and security is increased. Further, since S1[I], S1[B41], S2[B40], etc. have 4 bytes, the processing speed is high.
    Type: Grant
    Filed: September 9, 2005
    Date of Patent: May 14, 2013
    Assignee: Mitsubishi Electric Corporation
    Inventor: Mitsuru Matsui
  • Patent number: 7864950
    Abstract: It is desired to share one circuit by an encryption unit 200 and a decryption unit 500. A normal data transformation unit (FL) 251 and an inverse data transformation unit (FL?1) 273 are located at point symmetry on a non-linear data transformation unit 220, and a normal data transformation unit (FL) 253 and an inverse data transformation unit (FL?1) 271 are located at point symmetry on the non-linear data transformation unit 220. Therefore, the encryption unit 200 and the decryption unit 500 can be configured using the same circuits.
    Type: Grant
    Filed: March 8, 2001
    Date of Patent: January 4, 2011
    Assignees: Mitsubishi Denki Kabushiki Kaisha, Nippon Telegraph and Telephone Corporation
    Inventors: Mitsuru Matsui, Toshio Tokita, Junko Nakajima, Masayuki Kanda, Shiho Moriai, Kazumaro Aoki
  • Patent number: 7822196
    Abstract: It is desired to share one circuit by an encryption unit 200 and a decryption unit 500. A normal data transformation unit (FL) 251 and an inverse data transformation unit (FL?1) 273 are located at point symmetry on a non-linear data transformation unit 220, and a normal data transformation unit (FL) 253 and an inverse data transformation unit (FL?1) 271 are located at point symmetry on the non-linear data transformation unit 220. Therefore, the encryption unit 200 and the decryption unit 500 can be configured using the same circuits.
    Type: Grant
    Filed: October 28, 2005
    Date of Patent: October 26, 2010
    Assignees: Mitsubishi Denki Kabushiki Kaisha, Nippon Telegraph and Telephone Corporation
    Inventors: Mitsuru Matsui, Toshio Tokita, Junko Nakajima, Masayuki Kanda, Shiho Moriai, Kazumaro Aoki
  • Patent number: 7760870
    Abstract: It is desired to share one circuit by an encryption unit 200 and a decryption unit 500. A normal data transformation unit (FL) 251 and an inverse data transformation unit (FL?1) 273 are located at point symmetry on a non-linear data transformation unit 220, and a normal data transformation unit (FL) 253 and an inverse data transformation unit (FL?1) 271 are located at point symmetry on the non-linear data transformation unit 220. Therefore, the encryption unit 200 and the decryption unit 500 can be configured using the same circuits.
    Type: Grant
    Filed: October 28, 2005
    Date of Patent: July 20, 2010
    Assignees: Mitsubishi Denki Kabushiki Kaisha, Nippon Telegraph and Telephone Corporation
    Inventors: Mitsuru Matsui, Toshio Tokita, Junko Nakajima, Masayuki Kanda, Shiho Moriai, Kazumaro Aoki
  • Patent number: 7760871
    Abstract: It is desired to share one circuit by an encryption unit 200 and a decryption unit 500. A normal data transformation unit (FL) 251 and an inverse data transformation unit (FL?1) 273 are located at point symmetry on a non-linear data transformation unit 220, and a normal data transformation unit (FL) 253 and an inverse data transformation unit (FL?1) 271 are located at point symmetry on the non-linear data transformation unit 220. Therefore, the encryption unit 200 and the decryption unit 500 can be configured using the same circuits.
    Type: Grant
    Filed: October 28, 2005
    Date of Patent: July 20, 2010
    Assignees: Mitsubishi Denki Kabushiki Kaisha, Nippon Telegraph and Telephone Corporation
    Inventors: Mitsuru Matsui, Toshio Tokita, Junko Nakajima, Masayuki Kanda, Shiho Moriai, Kazumaro Aoki
  • Patent number: 7697684
    Abstract: It is desired to share one circuit by an encryption unit 200 and a decryption unit 500. A normal data transformation unit (FL) 251 and an inverse data transformation unit (FL?1) 273 are located at point symmetry on a non-linear data transformation unit 220, and a normal data transformation unit (FL) 253 and an inverse data transformation unit (FL?1) 271 are located at point symmetry on the non-linear data transformation unit 220. Therefore, the encryption unit 200 and the decryption unit 500 can be configured using the same circuits.
    Type: Grant
    Filed: October 28, 2005
    Date of Patent: April 13, 2010
    Assignees: Mitsubishi Denki Kabushiki Kaisha, Nippon Telegraph and Telephone Corporation
    Inventors: Mitsuru Matsui, Toshio Tokita, Junko Nakajima, Masayuki Kanda, Shiho Moriai, Kazumaro Aoki
  • Patent number: 7639800
    Abstract: A sub converter 330 provided in a data conversion apparatus for data encryption/decryption includes a data conversion function and a data transfer function or key transfer function, the sub converter converts data and transfers data that is nonlinear converted in a main converter 320 or a key that is outputted from a key KL register 240, by switching between the data conversion function and the data or key transfer function.
    Type: Grant
    Filed: March 7, 2003
    Date of Patent: December 29, 2009
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Tomomi Kasuya, Mitsuru Matsui, Tetsuya Ichikawa
  • Publication number: 20070266067
    Abstract: A pseudo-random number generator 100 generates a pseudo-random number by the following operation. At C.2, S1[B41] is determined from B41 set in a second internal memory, and S2[B40] is determined from B40. Then, R[J] is generated from S1[I], S1[B41], and S2[B40]. At C.3, S1[I] is newly generated based on S1[B41] and S2[B40]. At C.4, B4 is updated from S2(I). In the above, the relationship between R[J] and S2(I) is cut off, which makes difficult to estimate S2(I) from R[J], and security is increased. Further, since S1[I], S1[B41], S2[B40], etc. have 4 bytes, the processing speed is high.
    Type: Application
    Filed: September 9, 2005
    Publication date: November 15, 2007
    Inventor: Mitsuru Matsui
  • Patent number: 7096369
    Abstract: In a data transformation apparatus for transforming two arbitrary pieces of data of A input data and B input data, a first nonlinear transformation of the A input data is performed using a first key parameter, a transformed result is output, an XOR operation of the transformed result and the B input data is performed to output an XORed result as B intermediate data, and the B intermediate data is input to a next sub-transformation unit as B input data. On the other hand, the B input data is input to a next sub-transformation unit as A input data. A second nonlinear transformation of the B input data is performed using a second key parameter, the transformed result is output, an XOR operation of the transformed result and the B intermediate data is performed to output an XORed result as B intermediate data, and the B intermediate data is input to a next sub-transformation unit as B input data.
    Type: Grant
    Filed: May 22, 2002
    Date of Patent: August 22, 2006
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Mitsuru Matsui, Toshio Tokita
  • Publication number: 20060050874
    Abstract: It is desired to share one circuit by an encryption unit 200 and a decryption unit 500. A normal data transformation unit (FL) 251 and an inverse data transformation unit ((FL?1)) 273 are located at point symmetry on a non-linear data transformation unit 220, and a normal data transformation unit (FL) 253 and an inverse data transformation unit ((FL?1)) 271 are located at point symmetry on the non-linear data transformation unit 220. Therefore, the encryption unit 200 and the decryption unit 500 can be configured using the same circuits.
    Type: Application
    Filed: October 28, 2005
    Publication date: March 9, 2006
    Inventors: Mitsuru Matsui, Toshio Tokita, Junko Nakajima, Masayuki Kanda, Shiho Moriai, Kazumaro Aoki
  • Publication number: 20060050872
    Abstract: It is desired to share one circuit by an encryption unit 200 and a decryption unit 500. A normal data transformation unit (FL) 251 and an inverse data transformation unit (FL?1) 273 are located at point symmetry on a non-linear data transformation unit 220, and a normal data transformation unit (FL) 253 and an inverse data transformation unit (FL?1) 271 are located at point symmetry on the non-linear data transformation unit 220. Therefore, the encryption unit 200 and the decryption unit 500 can be configured using the same circuits.
    Type: Application
    Filed: October 28, 2005
    Publication date: March 9, 2006
    Inventors: Mitsuru Matsui, Toshio Tokita, Junko Nakajima, Masayuki Kanda, Shiho Moriai, Kazumaro Aoki
  • Publication number: 20060050873
    Abstract: It is desired to share one circuit by an encryption unit 200 and a decryption unit 500. A normal data transformation unit (FL) 251 and an inverse data transformation unit (FL?1) 273 are located at point symmetry on a non-linear data transformation unit 220, and a normal data transformation unit (FL) 253 and an inverse data transformation unit (FL?1) 271 are located at point symmetry on the non-linear data transformation unit 220. Therefore, the encryption unit 200 and the decryption unit 500 can be configured using the same circuits.
    Type: Application
    Filed: October 28, 2005
    Publication date: March 9, 2006
    Inventors: Mitsuru Matsui, Toshio Tokita, Junko Nakajima, Masayuki Kanda, Shiho Moriai, Kazumaro Aoki
  • Publication number: 20060045265
    Abstract: It is desired to share one circuit by an encryption unit 200 and a decryption unit 500. A normal data transformation unit (FL) 251 and an inverse data transformation unit (FL?1) 273 are located at point symmetry on a non-linear data transformation unit 220, and a normal data transformation unit (FL) 253 and an inverse data transformation unit (FL?1) 271 are located at point symmetry on the non-linear data transformation unit 220. Therefore, the encryption unit 200 and the decryption unit 500 can be configured using the same circuits.
    Type: Application
    Filed: October 28, 2005
    Publication date: March 2, 2006
    Inventors: Mitsuru Matsui, Toshio Tokita, Junko Nakajima, Masayuki Kanda, Shiho Moriai, Kazumaro Aoki
  • Publication number: 20050226407
    Abstract: A sub converter 330 provided in a data conversion apparatus for data encryption/decryption includes a data conversion function and a data transfer function or key transfer function, the sub converter converts data and transfers data that is nonlinear converted in a main converter 320 or a key that is outputted from a key KL register 240, by switching between the data conversion function and the data or key transfer function.
    Type: Application
    Filed: March 7, 2003
    Publication date: October 13, 2005
    Inventors: Tomomi Kasuya, Mitsuru Matsui, Tetsuya Ichikawa
  • Patent number: 6687727
    Abstract: An integer Z101 is divided by an integer I102 to obtain a remainder R109. The integer I102 includes a polynomial of power of a basic operational unit of a computer. In this way, the integer I for divisor is limited based on the basic operational unit of the computer, thus a shift operation, which is required for a conventional operation method, can be eliminated. The remainder can be calculated by only addition and subtraction. Accordingly, a code size becomes compact and the remainder of the integer can be calculated at a high speed.
    Type: Grant
    Filed: May 21, 2002
    Date of Patent: February 3, 2004
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventor: Mitsuru Matsui