Patents by Inventor Mitsuru Nagai

Mitsuru Nagai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8724292
    Abstract: A lithium-ion capacitor excellent in durability, which has high energy density and high capacity retention ratio when the capacitor is charged and discharged at a high load, is disclosed. The lithium-ion capacitor includes a positive electrode, a negative electrode and an aprotic organic solvent of a lithium salt as an electrolyte solution. In the lithium-ion capacitor, a positive electrode active material allows lithium ions and/or anions to be doped thereinto and de-doped therefrom, and a negative electrode active material allows lithium ions to be doped thereinto and de-doped therefrom. At least one of the negative electrode and the positive electrode is pre-doped with lithium ions so that after the positive electrode and the negative electrode are shortcircuited, a potential of the positive electrode is 2 V (relative to Li/Li+) or lower. A thickness of a positive electrode layer of the positive electrode is within a range from 18 to 108 ?m.
    Type: Grant
    Filed: August 31, 2007
    Date of Patent: May 13, 2014
    Assignee: Fuji Jukogyo Kabushiki Kaisha
    Inventors: Hiromoto Taguchi, Shinichi Tasaki, Nobuo Ando, Mitsuru Nagai, Yukinori Hatou
  • Patent number: 8685117
    Abstract: A lithium ion capacitor includes, as a lithium ion supply source, a lithium metal foil for batteries or capacitors. A current collector 4 and a separator 3 formed of a paper or resin nonwoven fabric are preliminarily pressure-bonded and integrated to opposite surfaces of a lithium metal foil 1 for batteries or capacitors.
    Type: Grant
    Filed: December 12, 2006
    Date of Patent: April 1, 2014
    Assignee: Fuji Jukogyo Kabushiki Kaisha
    Inventors: Shinichi Tasaki, Mitsuru Nagai, Nobuo Ando
  • Publication number: 20130119165
    Abstract: A coating nozzle for a high-viscosity paint is equipped with an introduction passage, an inner space, and a nozzle slit, which communicate with one another, and sprays a coating body with the high-viscosity paint from the nozzle slit in a radial direction. The nozzle slit is constructed in a sectional shape having a predetermined angle in a plan view. When the nozzle slit is regarded as having the sectional shape, an arc of the sectional shaped nozzle slit serves as a nozzle slit outlet. The nozzle slit outlet has a nozzle slit outlet width equal to or larger than 35 mm and a flattening equal to or smaller than 0.01 where a slit height represents a clearance of the nozzle slit outlet, the nozzle slit outlet width represents a chord of the arc, and the flattening represents a ratio of the slit height to the nozzle slit outlet width.
    Type: Application
    Filed: June 29, 2011
    Publication date: May 16, 2013
    Applicants: AISIN KAKO KABUSHIKI KAISHA, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Ichio Tomita, Kenji Tajima, Mitsuru Nagai, Junichi Kawai
  • Patent number: 8404126
    Abstract: A resist layer is formed over one surface of a current-collector material, while a resist layer having a predetermined pattern is formed on the other surface of the current-collector material. Through-holes are formed on the current-collector material through an etching process. An electrode slurry is applied onto the current-collector material formed with the through-holes without removing the resist layers. Specifically, since the through-holes are closed by the resist layer, the electrode slurry does not pass through the through-holes to leak out. Therefore, the current-collector material can be conveyed in the horizontal direction, whereby the productivity of an electrode can be enhanced. The resist layers are made of PVdF, and the resist layers are removed in a heating and drying step in which the PVdF is dissolved.
    Type: Grant
    Filed: March 23, 2009
    Date of Patent: March 26, 2013
    Assignee: Fuji Jukogyo Kabushiki Kaisha
    Inventors: Nobuo Ando, Mitsuru Nagai
  • Patent number: 8263258
    Abstract: An electric storage device 10 has an electrode laminate unit 12 including positive electrodes 14, negative electrodes 15 and a lithium electrode 16 provided at the outermost part of the electrode laminate unit 12. The lithium electrode 16 has a lithium-electrode current collector 26 welded to a negative-electrode current collector 22 and a lithium unit 27 sandwiched between the lithium-electrode current collector 26 and the negative electrode 15. The lithium unit 27 is composed of a lithium holding plate 27a that is in contact with the lithium-electrode current collector 26, and a lithium ion source 27b that is provided to the lithium holding plate 27a. The lithium ion source 27b is not mounted on the lithium-electrode current collector 26, but only the lithium-electrode current collector 26 is laminated and welded, whereby the damage of the lithium ion source 27b is prevented, and the manufacturing operation is simplified.
    Type: Grant
    Filed: February 2, 2009
    Date of Patent: September 11, 2012
    Assignee: Fuji Jukogyo Kabushiki Kaisha
    Inventors: Kunio Nakazato, Mitsuru Nagai, Nobuo Ando
  • Patent number: 8232009
    Abstract: An electrode laminate unit of an electric storage device includes positive electrodes, negative electrodes and a lithium electrode connected to the negative electrode. When an electrolyte solution is injected into the electric storage device, lithium ions are emitted from the lithium electrode to the negative electrode. A positive and a negative electrode current collector have through-holes that guide the lithium ions in the laminating direction. The aperture ratio of the through-holes at the edge parts where the electrolyte solution is easy to be permeated is set to be smaller than the aperture ratio at central parts in order to suppress the permeation. Thus, the distribution of the electrolyte solution is made uniform, whereby the doping amount is made uniform.
    Type: Grant
    Filed: July 21, 2009
    Date of Patent: July 31, 2012
    Assignee: Fuji Jukogyo Kabushiki Kaisha
    Inventors: Nobuo Ando, Mitsuru Nagai, Takashi Utsunomiya, Ken Baba
  • Patent number: 8166635
    Abstract: In a current collector laminating step, a current-collector laminate unit 30 composed of current-collector materials 31 and 32 and a film material 33 is formed. Resist layers 34 having a predetermined pattern are formed on both surfaces of the current-collector laminate unit 30. An etching process is performed with the resist layers 34 used as a mask, whereby through-holes 20a and 23a are formed on the respective current-collector materials 31 and 32. The resist layers 34 are removed from the current-collector laminate unit 30. Since the etching process is performed on the plural current-collector materials 31 and 32, productivity of an electrode can be enhanced. During the application of the slurry, the film material 33 prevents the leakage of the electrode slurry. Therefore, the current-collector laminate unit 30 can be conveyed in the horizontal direction, whereby the productivity of the electrode can be enhanced.
    Type: Grant
    Filed: March 25, 2009
    Date of Patent: May 1, 2012
    Assignee: Fuji Jukogyo Kabushiki Kaisha
    Inventors: Mitsuru Nagai, Nobuo Ando, Takashi Utsunomiya, Yutaka Sato, Ken Baba
  • Patent number: 8148002
    Abstract: An electric storage device 10 has a positive electrode 13, a negative electrode 14 and a separator 15 provided between the positive electrode 13 and the negative electrode 14. The negative electrode surface 14b is formed to be larger than the positive electrode surface 13b in such a manner that a positive electrode outer edge 13c and a negative electrode outer edge 14c are apart from each other by 2 mm or more. By this configuration, an ion restricting section 15b is formed at the outer peripheral portion of the separator 15. Accordingly, the movement of the lithium ions toward the negative electrode end surface 14a can be restricted, when the device is charged with a large current, whereby the deposition of metal lithium on the negative electrode end surface 14a can be prevented.
    Type: Grant
    Filed: February 2, 2009
    Date of Patent: April 3, 2012
    Assignee: Fuji Jukogyo Kabushiki Kaisha
    Inventors: Mitsuru Nagai, Takashi Utsunomiya, Kunio Nakazato, Nobuo Ando
  • Patent number: 8136507
    Abstract: A fuel supply system includes a feed pump pumping up fuel in a fuel tank, a filter removing a foreign matter contained in the fuel discharged from the feed pump, and a high-pressure pump pressuring and discharging the fuel toward an internal combustion engine. A fuel pipe introducing the fuel from the filter to the high-pressure pump and a fuel pipe introducing the fuel from the filter to a housing of the high-pressure pump are formed independently of each other.
    Type: Grant
    Filed: January 7, 2010
    Date of Patent: March 20, 2012
    Assignee: Denso Corporation
    Inventor: Mitsuru Nagai
  • Patent number: 7817403
    Abstract: A lithium ion capacitor having high energy density, high output density, high capacity and high safety includes a positive electrode made of a material capable of being reversibly doped with lithium ions and/or anions, a negative electrode made of a material capable of being reversively doped with lithium ions, and an aprotic organic solution of a lithium salt as an electrolytic solution. Wherein, the positive electrode and the negative electrode are laminated or wound with a separator interposed between them, the area of the positive electrode is smaller than the area of the negative electrode. The face of the positive electrode is substantially covered by the face of the negative electrode when they are laminated or wound.
    Type: Grant
    Filed: July 28, 2006
    Date of Patent: October 19, 2010
    Assignee: Fuji Jukogyo Kabushiki Kaisha
    Inventors: Shinichi Tasaki, Mitsuru Nagai, Hiromoto Taguchi, Kohei Matsui, Risa Takahata, Kenji Kojima, Nobuo Ando, Yukinori Hato, Osamu Hatozaki
  • Publication number: 20100196172
    Abstract: A fuel supply system includes a feed pump pumping up fuel in a fuel tank, a filter removing a foreign matter contained in the fuel discharged from the feed pump, and a high-pressure pump pressuring and discharging the fuel toward an internal combustion engine. A fuel pipe introducing the fuel from the filter to the high-pressure pump and a fuel pipe introducing the fuel from the filter to a housing of the high-pressure pump are formed independently of each other.
    Type: Application
    Filed: January 7, 2010
    Publication date: August 5, 2010
    Applicant: DENSO CORPORATION
    Inventor: Mitsuru NAGAI
  • Patent number: 7733629
    Abstract: A lithium ion capacitor including a positive electrode, a negative electrode, and an aprotic organic solvent solution of a lithium salt as an electrolytic solution. The positive electrode active material is capable of reversibly supporting lithium ions and/or anions, the negative electrode active material is capable of reversibly supporting lithium ions and anions, and the potentials of the positive electrode and the negative electrode are at most 2.0 V after the positive electrode and the negative electrode are short-circuited. The positive electrode and the negative electrode are alternately laminated with a separator interposed therebetween to constitute an electrode unit, the cell is constituted by at least two such electrode units, lithium metal is disposed between the electrode units, and lithium ions are preliminarily supported by the negative electrode and/or the positive electrode by electrochemical contact of the lithium metal with the negative electrode and/or the positive electrode.
    Type: Grant
    Filed: October 19, 2005
    Date of Patent: June 8, 2010
    Assignee: Fuji Jukogyo Kabushiki Kaisha
    Inventors: Shinichi Tasaki, Nobuo Ando, Mitsuru Nagai, Atsuro Shirakami, Kohei Matsui, Yukinori Hato
  • Patent number: 7697264
    Abstract: It is to provide a lithium ion capacitor having a high energy density, a high output density, a large capacity and high safety. A lithium ion capacitor comprising a positive electrode, a negative electrode and an aprotic organic solvent solution of a lithium salt as an electrolytic solution, wherein a positive electrode active material is a material capable of reversibly supporting lithium ions and anions, a negative electrode active material is a material capable of reversibly supporting lithium ions, and the potentials of the positive electrode and the negative electrode are at most 2.
    Type: Grant
    Filed: October 19, 2005
    Date of Patent: April 13, 2010
    Assignee: Fuji Jukogyo Kabushiki Kaisha
    Inventors: Shinichi Tasaki, Nobuo Ando, Mitsuru Nagai, Atsuro Shirakami, Kohei Matsui, Yukinori Hato
  • Publication number: 20100035150
    Abstract: An electrode laminate unit of an electric storage device includes positive electrodes, negative electrodes and a lithium electrode connected to the negative electrode. When an electrolyte solution is injected into the electric storage device, lithium ions are emitted from the lithium electrode to the negative electrode. A positive and a negative electrode current collector have through-holes that guide the lithium ions in the laminating direction. The aperture ratio of the through-holes at the edge parts where the electrolyte solution is easy to be permeated is set to be smaller than the aperture ratio at central parts in order to suppress the permeation. Thus, the distribution of the electrolyte solution is made uniform, whereby the doping amount is made uniform.
    Type: Application
    Filed: July 21, 2009
    Publication date: February 11, 2010
    Applicant: Fuji Jukogyo Kabushiki Kaisha
    Inventors: Nobuo Ando, Mitsuru Nagai, Takashi Utsunomiya, Ken Baba
  • Publication number: 20090242507
    Abstract: A resist layer is formed over one surface of a current-collector material, while a resist layer having a predetermined pattern is formed on the other surface of the current-collector material. Through-holes are formed on the current-collector material through an etching process. An electrode slurry is applied onto the current-collector material formed with the through-holes without removing the resist layers. Specifically, since the through-holes are closed by the resist layer, the electrode slurry does not pass through the through-holes to leak out. Therefore, the current-collector material can be conveyed in the horizontal direction, whereby the productivity of an electrode can be enhanced. The resist layers are made of PVdF, and the resist layers are removed in a heating and drying step in which the PVdF is dissolved.
    Type: Application
    Filed: March 23, 2009
    Publication date: October 1, 2009
    Applicant: Fuji Jukogyo Kabushiki Kaisha
    Inventors: Nobuo Ando, Mitsuru Nagai
  • Publication number: 20090246629
    Abstract: In a current collector laminating step, a current-collector laminate unit 30 composed of current-collector materials 31 and 32 and a film material 33 is formed. Resist layers 34 having a predetermined pattern are formed on both surfaces of the current-collector laminate unit 30. An etching process is performed with the resist layers 34 used as a mask, whereby through-holes 20a and 23a are formed on the respective current-collector materials 31 and 32. The resist layers 34 are removed from the current-collector laminate unit 30. Since the etching process is performed on the plural current-collector materials 31 and 32, productivity of an electrode can be enhanced. During the application of the slurry, the film material 33 prevents the leakage of the electrode slurry. Therefore, the current-collector laminate unit 30 can be conveyed in the horizontal direction, whereby the productivity of the electrode can be enhanced.
    Type: Application
    Filed: March 25, 2009
    Publication date: October 1, 2009
    Applicant: Fuji Jukogyo Kabushiki Kaisha
    Inventors: Mitsuru Nagai, Nobuo Ando, Takashi Utsunomiya, Yutaka Sato, Ken Baba
  • Publication number: 20090246626
    Abstract: A lithium ion capacitor includes, as a lithium ion supply source, a lithium metal foil for batteries or capacitors. A current collector 4 and a separator 3 formed of a paper or resin nonwoven fabric are preliminarily pressure-bonded and integrated to opposite surfaces of a lithium metal foil 1 for batteries or capacitors.
    Type: Application
    Filed: December 12, 2006
    Publication date: October 1, 2009
    Applicant: FUJI JUKOGYO KABUSHIKI KAISHA
    Inventors: Shinichi Tasaki, Mitsuru Nagai, Nobuo Ando
  • Patent number: 7594499
    Abstract: A fuel feed apparatus is provided for supplying high-pressure fuel to a common rail of an accumulator fuel injection system. The accumulator fuel injection system includes an injector for injecting high-pressure fuel accumulated in the common rail into a combustion chamber of an internal combustion engine. The fuel feed apparatus includes a high-pressure pump for press-feeding fuel to the common rail, and a feed pump for pumping fuel from a fuel tank to the high-pressure pump. A fuel filter is provided downstream of the feed pump for filtering fuel pumped from the feed pump. A return passage is provided for returning fuel from a downstream of the feed pump to an upstream of the feed pump. A return flow control unit is provided for controlling fuel retuning through the return passage.
    Type: Grant
    Filed: December 7, 2007
    Date of Patent: September 29, 2009
    Assignee: Denso Corporation
    Inventors: Masashi Suzuki, Hiroyuki Shimai, Mitsuru Nagai
  • Publication number: 20090214955
    Abstract: A mixture layer for an electrode is formed on a punched current collector. For example, the mixture layer is made of an active material, conductive assistant, binder, and the like. The mixture layer having the structure described above is formed into a slurry, for example, and applied onto the current collector. The applied mixture layer is dried to fabricate an electrode. The thus formed electrode is used to assemble an electric storage device. Upon the assembly, lithium ions are pre-doped into a negative electrode. The pre-doping time is determined according to air permeability of the electrodes.
    Type: Application
    Filed: February 24, 2009
    Publication date: August 27, 2009
    Applicant: Fuji Jukogyo Kabushiki Kaisha
    Inventors: Takashi Utsunomiya, Mitsuru Nagai, Kunio Nakazato, Nobuo Ando
  • Publication number: 20090197175
    Abstract: An electric storage device 10 has a positive electrode 13, a negative electrode 14 and a separator 15 provided between the positive electrode 13 and the negative electrode 14. The negative electrode surface 14b is formed to be larger than the positive electrode surface 13b in such a manner that a positive electrode outer edge 13c and a negative electrode outer edge 14c are apart from each other by 2 mm or more. By this configuration, an ion restricting section 15b is formed at the outer peripheral portion of the separator 15. Accordingly, the movement of the lithium ions toward the negative electrode end surface 14a can be restricted, when the device is charged with a large current, whereby the deposition of metal lithium on the negative electrode end surface 14a can be prevented.
    Type: Application
    Filed: February 2, 2009
    Publication date: August 6, 2009
    Applicant: Fuji Jukogyo Kabushiki Kaisha
    Inventors: Mitsuru Nagai, Takashi Utsunomiya, Kunio Nakazato, Nobuo Ando