Patents by Inventor Mitsuru Nagano

Mitsuru Nagano has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11287578
    Abstract: There is provided a small MCS with the number of leads reduced by half as compared with the conventional configuration. A multicast switch according to the present invention is formed on a substrate, comprising: M input ports, N output ports; M×N optical switch units (optical SU); optical waveguides optically connecting the M input ports, M×N optical SU, and N output ports; and leads connected to the respective M×N optical SU. A multicast switch is configured such that by activating one optical SU, an optical signal input to an input port associated with the activated optical SU is output from an output port associated with the activated optical SU. The M×N optical SU include at least a gate switch and a main switch. In each optical SU, the gate switch and the main switch are connected to the common lead.
    Type: Grant
    Filed: March 26, 2019
    Date of Patent: March 29, 2022
    Assignee: NTT ELECTRONICS CORPORATION
    Inventors: Mitsuru Nagano, Tatsuya Yoshii, Masahiro Yanagisawa, Tatsunori Nakahashi
  • Publication number: 20210018692
    Abstract: There is provided a small MCS with the number of leads reduced by half as compared with the conventional configuration. A multicast switch according to the present invention is formed on a substrate, comprising: M input ports, N output ports; M×N optical switch units (optical SU); optical waveguides optically connecting the M input ports, M×N optical SU, and N output ports; and leads connected to the respective M×N optical SU. A multicast switch is configured such that by activating one optical SU, an optical signal input to an input port associated with the activated optical SU is output from an output port associated with the activated optical SU. The M×N optical SU include at least a gate switch and a main switch. In each optical SU, the gate switch and the main switch are connected to the common lead.
    Type: Application
    Filed: March 26, 2019
    Publication date: January 21, 2021
    Inventors: Mitsuru Nagano, Tatsuya Yoshii, Masahiro Yanagisawa, Tatsunori Nakahashi
  • Patent number: 10126502
    Abstract: In a waveguide device, unnecessary optical power is appropriately terminated. According to an embodiment of the present invention, the waveguide device has a termination structure filled with a light blocking material to terminate light from a waveguide end. In the termination structure, a cladding and a core are removed to form a groove on an optical waveguide. The groove is filled with a material (light blocking material) that attenuates the intensity of light. Thus, light input to the termination structure is attenuated by the light blocking material, suppressing crosstalk which possibly effects on other optical devices. Thus, such a termination structure can restrain crosstalk occurred in optical devices integrated in the same substrate and can also suppress crosstalk which possibly effects on any other optical device connected directly to the substrate.
    Type: Grant
    Filed: January 26, 2017
    Date of Patent: November 13, 2018
    Assignees: NTT ELECTRONICS CORPORATION, NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Takanori Ishikawa, Tomoyo Shibazaki, Mitsuru Nagano, Masahiro Yanagisawa, Hiroshi Terui, Mikitaka Itoh
  • Patent number: 9684129
    Abstract: In a waveguide device, unnecessary optical power is appropriately terminated. According to an embodiment of the present invention, the waveguide device has a termination structure filled with a light blocking material to terminate light from a waveguide end. In the termination structure, a cladding and a core are removed to form a groove on an optical waveguide. The groove is filled with a material (light blocking material) that attenuates the intensity of light. Thus, light input to the termination structure is attenuated by the light blocking material, suppressing crosstalk which possibly effects on other optical devices. Thus, such a termination structure can restrain crosstalk occurred in optical devices integrated in the same substrate and can also suppress crosstalk which possibly effects on any other optical device connected directly to the substrate.
    Type: Grant
    Filed: March 26, 2015
    Date of Patent: June 20, 2017
    Assignees: NTT Electronics Corporation, Nippon Telegraph and Telephone Corporation
    Inventors: Takanori Ishikawa, Tomoyo Shibazaki, Mitsuru Nagano, Masahiro Yanagisawa, Hiroshi Terui, Mikitaka Itoh
  • Publication number: 20170146742
    Abstract: In a waveguide device, unnecessary optical power is appropriately terminated. According to an embodiment of the present invention, the waveguide device has a termination structure filled with a light blocking material to terminate light from a waveguide end. In the termination structure, a cladding and a core are removed to form a groove on an optical waveguide. The groove is filled with a material (light blocking material) that attenuates the intensity of light. Thus, light input to the termination structure is attenuated by the light blocking material, suppressing crosstalk which possibly effects on other optical devices. Thus, such a termination structure can restrain crosstalk occurred in optical devices integrated in the same substrate and can also suppress crosstalk which possibly effects on any other optical device connected directly to the substrate.
    Type: Application
    Filed: January 26, 2017
    Publication date: May 25, 2017
    Inventors: Takanori Ishikawa, Tomoyo Shibazaki, Mitsuru Nagano, Masahiro Yanagisawa, Hiroshi Terui, Mikitaka Itoh
  • Publication number: 20150205043
    Abstract: In a waveguide device, unnecessary optical power is appropriately terminated. According to an embodiment of the present invention, the waveguide device has a termination structure filled with a light blocking material to terminate light from a waveguide end. In the termination structure, a cladding and a core are removed to form a groove on an optical waveguide. The groove is filled with a material (light blocking material) that attenuates the intensity of light. Thus, light input to the termination structure is attenuated by the light blocking material, suppressing crosstalk which possibly effects on other optical devices. Thus, such a termination structure can restrain crosstalk occurred in optical devices integrated in the same substrate and can also suppress crosstalk which possibly effects on any other optical device connected directly to the substrate.
    Type: Application
    Filed: March 26, 2015
    Publication date: July 23, 2015
    Inventors: Takanori Ishikawa, Tomoyo Shibazkai, Mitsuru Nagano, Masahiro Yanagisawa, Hiroshi Terui, Mikitaka Itoh
  • Patent number: 9020307
    Abstract: In a waveguide device, unnecessary optical power is appropriately terminated. According to an embodiment of the present invention, the waveguide device has a termination structure filled with a light blocking material to terminate light from a waveguide end. In the termination structure, a cladding and a core are removed to form a groove on an optical waveguide. The groove is filled with a material (light blocking material) that attenuates the intensity of light. Thus, light input to the termination structure is attenuated by the light blocking material, suppressing crosstalk which possibly effects on other optical devices. Thus, such a termination structure can restrain crosstalk occurred in optical devices integrated in the same substrate and can also suppress crosstalk which possibly effects on any other optical device connected directly to the substrate.
    Type: Grant
    Filed: November 26, 2010
    Date of Patent: April 28, 2015
    Assignees: NTT Electronics Corporation, Nippon Telegraph and Telephone Corporation
    Inventors: Takanori Ishikawa, Tomoyo Shibazaki, Mitsuru Nagano, Masahiro Yanagisawa, Hiroshi Terui, Mikitaka Itoh
  • Patent number: 8625943
    Abstract: Excess optical power in a waveguide device is appropriately terminated. According to one embodiment of the present invention, the waveguide device comprises a termination structure filled with a light blocking material for terminating light from the end section of a waveguide. This termination structure can be formed by forming a groove on an optical waveguide by removing the clad and core, and filling the inside of that groove with a material attenuating the intensity of the light (light blocking material). In this manner, light that enters into the termination structure is attenuated by the light blocking material, and influence on other optical devices as a crosstalk component can be suppressed. With such termination structure, not only the influence on optical devices integrated on the same substrate, but also the influence on other optical devices directly connected to that substrate can be suppressed.
    Type: Grant
    Filed: May 26, 2009
    Date of Patent: January 7, 2014
    Assignees: Nippon Telegraph and Telephone Corporation, NTT Electronics Corporation
    Inventors: Shunichi Soma, Takashi Goh, Yasuaki Hashizume, Masahiro Yanagisawa, Takanori Ishikawa, Mitsuru Nagano, Atsushi Murasawa, Masayuki Okuno
  • Patent number: 8615146
    Abstract: A planar optical waveguide including a clad layer, an optical waveguide having a core embedded in the clad layer; and a groove formed in the clad layer and having a reflection interface for totally reflecting a leaked light leaked from the optical waveguide to the clad layer. Since the reflection interface for totally reflecting the leaked light is formed in the clad layer, the leaked light is prevented from entering into the tap coupler, and the variation of the branching ratio can be reduced.
    Type: Grant
    Filed: July 29, 2009
    Date of Patent: December 24, 2013
    Assignee: NTT Electronics Corporation
    Inventors: Mitsuru Nagano, Akira Himeno, Masayuki Okuno, Masahiko Naito, Akihito Doi, Daisuke Ogawa, Akira Nagai
  • Publication number: 20120251041
    Abstract: In a waveguide device, unnecessary optical power is appropriately terminated. According to an embodiment of the present invention, the waveguide device has a termination structure filled with a light blocking material to terminate light from a waveguide end. In the termination structure, a cladding and a core are removed to form a groove on an optical waveguide. The groove is filled with a material (light blocking material) that attenuates the intensity of light. Thus, light input to the termination structure is attenuated by the light blocking material, suppressing crosstalk which possibly effects on other optical devices. Thus, such a termination structure can restrain crosstalk occurred in optical devices integrated in the same substrate and can also suppress crosstalk which possibly effects on any other optical device connected directly to the substrate.
    Type: Application
    Filed: November 26, 2010
    Publication date: October 4, 2012
    Applicants: NIPPON TELEGRAPH AND TELEPHONE CORPORATION, NTT ELECTRONICS CORPORATION
    Inventors: Takanori Ishikawa, Tomoyo Shibazaki, Mitsuru Nagano, Masahiro Yanagisawa, Hiroshi Terui, Mikitaka Itoh
  • Patent number: 7995876
    Abstract: Two AWG circuits are integrated while preventing degradation in quality of a multiplexing/demultiplexing function. An arrayed waveguide grating circuit includes: a first slab waveguide (52) connected to a first input waveguide (51a) and second output waveguides (55b); a second slab waveguide (54) connected to first output waveguides (55a) and a second input waveguide (51b); and an array waveguide (53) connecting the first slab waveguide (52) and the second slab waveguide (54), wherein the input waveguides (51a, 51b) are connected to the slab waveguides (52, 54) at an interval of 1.5× from the outermost second output waveguide out of the second output waveguides (55a, 55b) connected at an interval x depending on a wavelength.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: August 9, 2011
    Assignees: Nippon Telegraph and Telephone Corporation, NTT Electronics Corporation
    Inventors: Tomoyuki Yamada, Mitsuru Nagano, Mikitaka Ito, Toshio Watanabe, Takayuki Mizuno, Takashi Goh, Akimasa Kaneko
  • Publication number: 20110110629
    Abstract: A planar optical waveguide including a clad layer, an optical waveguide having a core embedded in the clad layer; and a groove formed in the clad layer and having a reflection interface for totally reflecting a leaked light leaked from the optical waveguide to the clad layer. Since the reflection interface for totally reflecting the leaked light is formed in the clad layer, the leaked light is prevented from entering into the tap coupler, and the variation of the branching ratio can be reduced.
    Type: Application
    Filed: July 29, 2009
    Publication date: May 12, 2011
    Inventors: Mitsuru Nagano, Akira Himeno, Masayuki Okuno, Masahiko Naito, Akihito Doi, Daisuke Ogawa, Akira Nagai
  • Publication number: 20110064355
    Abstract: Excess optical power in a waveguide device is appropriately terminated. According to one embodiment of the present invention, the waveguide device comprises a termination structure filled with a light blocking material for terminating light from the end section of a waveguide. This termination structure can be formed by forming a groove on an optical waveguide by removing the clad and core, and filling the inside of that groove with a material attenuating the intensity of the light (light blocking material). In this manner, light that enters into the termination structure is attenuated by the light blocking material, and influence on other optical devices as a crosstalk component can be suppressed. With such termination structure, not only the influence on optical devices integrated on the same substrate, but also the influence on other optical devices directly connected to that substrate can be suppressed.
    Type: Application
    Filed: May 26, 2009
    Publication date: March 17, 2011
    Applicants: NIPPON TELEGRAPH AND TELEPHONE CORPORATION, NTT ELECTRONICS CORPORATION
    Inventors: Shunichi Soma, Takashi Goh, Yasuaki Hashizume, Masahiro Yanagisawa, Takanori Ishikawa, Mitsuru Nagano, Atsushi Murasawa, Masayuki Okuno
  • Publication number: 20090263084
    Abstract: Two AWG circuits are integrated while preventing degradation in quality of a multiplexing/demultiplexing function. An arrayed waveguide grating circuit includes: a first slab waveguide (52) connected to a first input waveguide (51a) and second output waveguides (55b); a second slab waveguide (54) connected to first output waveguides (55a) and a second input waveguide (51b); and an array waveguide (53) connecting the first slab waveguide (52) and the second slab waveguide (54), wherein the input waveguides (51a, 51b) are connected to the slab waveguides (52, 54) at an interval of 1.5× from the outermost second output waveguide out of the second output waveguides (55a, 55b) connected at an interval x depending on a wavelength.
    Type: Application
    Filed: December 21, 2006
    Publication date: October 22, 2009
    Applicants: Nppon Telegraph and Telephone Corporation, NTT Electronics Corportion
    Inventors: Tomoyuki Yamada, Mitsuru Nagano, Mikitaka Ito, Toshio Watanabe, Takayuki Mizuno, Takashi Goh, Akimasa Kaneko
  • Publication number: 20080226290
    Abstract: By reducing the number of PD arrays, and by simplifying the configuration of an optical power monitor in a WDM system, a miniaturized, cost reduced optical signal monitoring apparatus, optical system or optical signal monitoring method is provided. An optical power monitor 1 has an optical switch 30 having four input ports 31, a DMUX 2 having 48 output ports, and six CSP type PD array modules 50 each including an 8-channel PD array. The output port 32 of the optical switch 30 having four switchable input ports 31 is optically connected to the input port 21 of the AWG 20. The 48 output ports 22 of the AWG 20 are each optically connected to photosensitive surfaces 53 of the individual PDs included in the CSP type PD array modules 50. The CSP type PD array modules 50 are mounted on the end face of the AWG 20.
    Type: Application
    Filed: March 5, 2008
    Publication date: September 18, 2008
    Applicants: Nippon Telegraph and Telephone Corporation, NTT Electronics Corporation
    Inventors: Takaharu Ohyama, Takashi Goh, Shin Kamei, Shunichi Sohma, Mikitaka Itoh, Ikuo Ogawa, Akimasa Kaneko, Tomoyuki Yamada, Mitsuru Nagano, Yoshiyuki Doi, Takashi Saida
  • Patent number: 6172731
    Abstract: A reinforcing plate is made up of a planar member which is composed of a panel fixture portion and connecting parts provided at both ends of the panel fixture portion. A scan signal input circuit substrate for supplying a scan signal to a display panel and a data signal input circuit substrate for supplying data are provided on respective sides of the display panel. The scan signal input circuit substrate has an input connector and electronic parts such as driver ICs etc., mounted thereon. The connecting parts of the reinforcing plate are fixed to the scan signal input circuit substrate so as not to interfere with the electronic parts while the panel fixture portion of the reinforcing plate is fixed to the display panel.
    Type: Grant
    Filed: April 6, 1998
    Date of Patent: January 9, 2001
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Mitsuru Nagano, Nobuaki Takahashi, Yoshitsugu Kawahigashi, Akira Murakami