Patents by Inventor Mitsuru Ohno

Mitsuru Ohno has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20040157067
    Abstract: In a magnetic sensor (1) including a substrate (10) having a magnetism-sensitive element (11) formed thereon, a hard membrane (14) is formed on the outermost surface, an organic film (13) to relieve the stress caused by the hard membrane (14) is formed under the hard membrane (14), and an inorganic film (12) to relieve the stress caused by the organic film (13) is formed between the organic film (13) and magnetism-sensitive element (11). Also, an intermediate film formed from an element having a large force of bonding to carbon may be formed between the organic film (13) and hard membrane (14). Thus, the magnetic sensor (MR sensor, for example) can be protected against an external shock.
    Type: Application
    Filed: October 20, 2003
    Publication date: August 12, 2004
    Applicant: Sony Precision Technology Inc.
    Inventors: Masaaki Kusumi, Mitsuru Ohno, Michio Okano, Hideki Nakamori, Touru Sumiya, Akitaka Tsunogae, Tomoyuki Nakada, Teruyuki Miura, Yoshihiko Ohkawara
  • Patent number: 6772088
    Abstract: A position transducer capable of accurately detecting an n-bit code by a small number of ABS detectors when there is provided one ABS track. In an ABS head, the ABS detectors 101 to 10n+m are disposed for a distance &lgr;1 between the first ABS detector 101 and (n+m)th ABS detector 10n+m to satisfy a requirement (n−1)&lgr;+2&dgr;<&lgr;1 and a distance &lgr;2 between two successive ones of the ABS detectors to satisfy a requirement 2&dgr;<&lgr;2<&lgr;−2&dgr;, so that at least one ABS detector is opposite to a stable area T in each of micro-areas at n successive bits.
    Type: Grant
    Filed: February 21, 2003
    Date of Patent: August 3, 2004
    Assignee: Sony Precision Technology Inc.
    Inventors: Yasuo Nekado, Michio Okano, Shigeru Ishimoto, Mitsuru Ohno, Masaaki Kusumi
  • Publication number: 20040065486
    Abstract: In a scale device including a case member (8) having a guide opening (9) formed therein, seal lip members (12A, 12B), a carrier unit (13) having seal lip pressing means (22, 23) formed thereon, and a coupling member (16) which slides inside and relative to the guide opening (9), the seal lip members (12A, 12B) are pressed at end portions (12e, 12f) thereof by the seal lip pressing means (22, 23) in the vicinity of opposite end portions (16b, 16c) of the coupling member (16) to prevent the seal lip members (12A, 12B) from being spread. Thus, any gaps can be prevented from taking place between the seal lip members (12A, 12B) and coupling member (16) in the vicinity of the opposite end portions (12e, 12f) of the latter. Therefore, dust or the like can be prevented from entering the case member (8).
    Type: Application
    Filed: September 29, 2003
    Publication date: April 8, 2004
    Applicant: Sony Precision Technology Inc.
    Inventors: Gunichi Nakamura, Mitsuru Ohno
  • Patent number: 6693565
    Abstract: There is provided a position transducer (1) capable of accurately detecting an n-bit code by n ABS detectors from one ABS track. When an INC value is under j or over k, signal output from each of the ABS detectors is binarized based on a threshold h and also based on a threshold l. First, an ABS value decider (24) decides that a bit is “H” when it has been judged as being “H” on the basis of both the thresholds and a bit is “L” when it is has been judged as being “L” on the basis of both the thresholds. When the INC value is under j, a lower bit has the same code as that of the deiced bit. So, the ABS value decider (24) decides that the lower bit is “H” or “L”. On the other hand, when the INC value is over k, an upper bit has the same code as the decided code. Thus, the ABS value decider (24) decides that the upper bit is “H” or “L”.
    Type: Grant
    Filed: February 21, 2003
    Date of Patent: February 17, 2004
    Assignee: Sony Precision Technology Inc.
    Inventors: Masaaki Kusumi, Michio Okano, Shigeru Ishimoto, Mitsuru Ohno, Yasuo Nekado
  • Patent number: 6657069
    Abstract: A 6-aminocarbonylmethyl-4H-2,3-dioxin-4-one compounds can be produced by reacting a 6-halomethyl-4H-2,3-dioxin-4-one compound with a primary or secondary amine and carbon monoxide. The reaction may be carried out in the presence of a catalyst comprising a platinum group metal. 3-oxopentanedicarboxylic acid monoamides and 3-oxopentanedicarboxylic acid amide esters can be are produced by reacting 6-aminocarbonylmethyl-4H-2,3-dioxin-4-one compound with an alcohol or water. Using such intermediates, 6-aminocarbonylmethyl-4H-2,3-dioxin-4-one compound, 3-oxopentanedicarboxylic acid amide esters can provide in an easy and simple and efficient manner.
    Type: Grant
    Filed: March 5, 2003
    Date of Patent: December 2, 2003
    Assignee: Daicel Chemical Industries, Ltd.
    Inventors: Miho Kawauchi, Noritsugu Yamasaki, Mitsuru Ohno
  • Publication number: 20030187608
    Abstract: A position transducer capable of accurately detecting an n-bit code by a small number of ABS detectors when there is provided one ABS track. In an ABS head, the ABS detectors 101 to 10n+m are disposed for a distance &lgr;1 between the first ABS detector 101 and (n+m)th ABS detector 10n+m to satisfy a requirement (n−1)&lgr;+2&dgr;<&lgr;1 and a distance &lgr;2 between two successive ones of the ABS detectors to satisfy a requirement 2&dgr;<&lgr;2<&lgr;−2&dgr;, so that at least one ABS detector is opposite to a stable area T in each of micro-areas at n successive bits.
    Type: Application
    Filed: February 21, 2003
    Publication date: October 2, 2003
    Inventors: Yasuo Nekado, Michio Okano, Shigeru Ishimoto, Mitsuru Ohno, Masaaki Kusumi
  • Publication number: 20030187609
    Abstract: There is provided a position transducer (1) capable of accurately detecting an n-bit code by n ABS detectors from one ABS track. When an INC value is under j or over k, signal output from each of the ABS detectors is binarized based on a threshlold h and also based on a threshold l. First, an ABS value decider (24) decides that a bit is “H” when it has been judged as being “H” on the basis of both the thresholds and a bit is “L” when it is has been judged as being “L” on the basis of both the thresholds. When the INC value is under j, a lower bit has the same code as that of the deiced bit. So, the ABS value decider (24) decides that the lower bit is “H” or “L”. On the other hand, when the INC value is over k, an upper bit has the same code as the decided code. Thus, the ABS value decider (24) decides that the upper bit is “H” or “L”.
    Type: Application
    Filed: February 21, 2003
    Publication date: October 2, 2003
    Inventors: Masaaki Kusumi, Michio Okano, Shigeru Ishimoto, Mitsuru Ohno, Yasuo Nekado
  • Publication number: 20030130519
    Abstract: A 6-aminocarbonylmethyl-4H-2,3-dioxin-4-one compounds can be produced by reacting a 6-halomethyl-4H-2,3-dioxin-4-one compound with a primary or secondary amine and carbon monoxide. The reaction may be carried out in the presence of a catalyst comprising a platinum group metal. 3-oxopentanedicarboxylic acid monoamides and 3-oxopentanedicarboxylic acid amide esters can be are produced by reacting 6-aminocarbonylmethyl-4H-2,3-dioxin-4-one compound with an alcohol or water. Using such intermediates, 6-aminocarbonylmethyl-4H-2,3-dioxin-4-one compound, 3-oxopentanedicarboxylic acid amide esters can provide in an easy and simple and efficient manner.
    Type: Application
    Filed: March 5, 2003
    Publication date: July 10, 2003
    Applicant: Daicel Chemical Industries, Ltd.
    Inventors: Miho Kawauchi, Noritsugu Yamasaki, Mitsuru Ohno
  • Patent number: 6548674
    Abstract: A 6-aminocarbonylmethyl-4H-2,3-dioxin-4-one compounds can be produced by reacting a 6-halomethyl-4H-2,3-dioxin-4-one compound with a primary or secondary amine and carbon monoxide. The reaction may be carried out in the presence of a catalyst comprising a platinum group metal. 3-oxopentanedicarboxylic acid monoamides and 3-oxopentanedicarboxylic acid amide esters can be are produced by reacting 6-aminocarbonylmethyl-4H-2,3-dioxin-4-one compound with an alcohol or water. Using such intermediates, 6-aminocarbonylmethyl-4H-2,3-dioxin-4-one compound, 3-oxopentanedicarboxylic acid amide esters can provide in an easy and simple and efficient manner.
    Type: Grant
    Filed: March 7, 2001
    Date of Patent: April 15, 2003
    Assignee: Daicel Chemical Industries, Ltd.
    Inventors: Miho Kawauchi, Noritsugu Yamasaki, Mitsuru Ohno
  • Patent number: 6462223
    Abstract: 6-Alkoxycarbonylmethyl-4H-1,3-dioxin-4-one derivatives are produced by reacting a 6-halomethyl-4H-1,3-dioxin-4-one derivative with carbon monoxide and an alcohol or water, and 3-oxopentanedicarboxylic acid esters are further produced by reacting the above derivatives with an alcohol or water. Such a process can produce 3-oxopentanedicarboxylic acid esters in an easy and simple and efficient manner.
    Type: Grant
    Filed: May 1, 2001
    Date of Patent: October 8, 2002
    Assignee: Daicel Chemical Industries, Ltd.
    Inventors: Mitsuru Ohno, Noritsugu Yamasaki, Satoru Nose
  • Patent number: 6297388
    Abstract: 6-Alkoxycarbonylmethyl-4H-1,3-dioxin-4-one derivatives are produced by reacting a 6-halomethyl-4H-1,3-dioxin-4-one derivative with carbon monoxide and an alcohol or water, and 3-oxopentanedicarboxylic acid esters are further produced by reacting the above derivatives with an alcohol or water. Such a process can produce 3-oxopentanedicarboxylic acid esters in an easy and simple and efficient manner.
    Type: Grant
    Filed: November 3, 2000
    Date of Patent: October 2, 2001
    Assignee: Daicel Chemical Industries, Ltd.
    Inventors: Mitsuru Ohno, Noritsugu Yamasaki, Satoru Nose
  • Publication number: 20010023297
    Abstract: A 6-aminocarbonylmethyl-4H-2,3-dioxin-4-one compounds can be produced by reacting a 6-halomethyl-4H-2,3-dioxin-4-one compound with a primary or secondary amine and carbon monoxide. The reaction may be carried out in the presence of a catalyst comprising a platinum group metal. 3-oxopentanedicarboxylic acid monoamides and 3-oxopentanedicarboxylic acid amide esters can be are produced by reacting 6-aminocarbonylmethyl-4H-2,3-dioxin-4-one compound with an alcohol or water. Using such intermediates, 6-aminocarbonylmethyl-4H-2,3-dioxin-4-one compound, 3-oxopentanedicarboxylic acid amide esters can provide in an easy and simple and efficient manner.
    Type: Application
    Filed: March 7, 2001
    Publication date: September 20, 2001
    Inventors: Miho Kawauchi, Noritsugu Yamasaki, Mitsuru Ohno
  • Publication number: 20010020103
    Abstract: 6-Alkoxycarbonylmethyl-4H-1,3-dioxin-4-one derivatives are produced by reacting a 6-halomethyl-4H-1,3-dioxin-4-one derivative with carbon monoxide and an alcohol or water, and 3-oxopentanedicarboxylic acid esters are further produced by reacting the above derivatives with an alcohol or water. Such a process can produce 3-oxopentanedicarboxylic acid esters in an easy and simple and efficient manner.
    Type: Application
    Filed: May 1, 2001
    Publication date: September 6, 2001
    Applicant: Daicel Chemical Industries, Ltd.
    Inventors: Mitsuru Ohno, Noritsugu Yamasaki, Satoru Nose
  • Patent number: 6054596
    Abstract: Reacting a diol (1) with a carbonic ester (2) to produce a cyclic carbonic ester (3) using a salt of a weak acid with an alkaline metal or alkaline earth metal as a catalyst. The diol (1) contains diols having an asymmetric carbon atom. The reaction mixture is neutralized and distilled to obtain a cyclic carbonic ester. Cyclic carbonic esters are produced using an easily accessible and easy to handle reactant, with good yield and under mild and moderate conditions.
    Type: Grant
    Filed: March 17, 1999
    Date of Patent: April 25, 2000
    Assignee: Daicel Chemical Industries, Ltd.
    Inventors: Mitsuru Ohno, Shuichi Yamagiwa
  • Patent number: 5907051
    Abstract: A method of producing a carbonic diester involves allowing an alcohol to react with carbon monoxide and oxygen in the presence of a supported catalyst wherein the support is an activated carbon obtained from a vegetable or polymeric raw material, a support having an aluminum content of up to 2% by weight, or a support having sulfur content of up to 1% by weight.
    Type: Grant
    Filed: December 23, 1993
    Date of Patent: May 25, 1999
    Assignee: Daicel Chemical Industries, Ltd.
    Inventors: Hirokazu Matsuda, Shingo Oda, Mitsuru Ohno
  • Patent number: 5405986
    Abstract: A catalyst for synthesizing a carbonic diester includes at least one copper compound selected from among copper oxides, copper hydroxides, a salt of copper with a weak acid consisting of the elements other than halogen such as copper borates, and complexes or complex salts consisting of the elements other than halogen and formed with copper or a copper compound a and ligand. The catalyst has a high activity, a high reaction selectivity and excellent stability with a minimal risk of corroding equipment. The catalyst can include, as a co-catalyst component, a platinum-group metal such as palladium or a halogen-free platinum-group metal compound such as palladium acetate. The catalyst component may be supported on a carrier, for example, an activated carbon. A carbonic diester is advantageously produced by allowing an alcohol to react with carbon monoxide and oxygen in the presence of the catalyst.
    Type: Grant
    Filed: January 24, 1994
    Date of Patent: April 11, 1995
    Assignee: Daicel Chemical Industries, Ltd.
    Inventors: Shingo Oda, Mitsuru Ohno
  • Patent number: 4649648
    Abstract: A linear scale features a removable scale channel and adjustable head assembly for easy, accurate, permanent positioning on a machine tool bed or other mobile device. The scale channel, and a matching positioning tool, has balls at opposite ends engaging a socketed mounting bracket. When in use, the flexible socket coupling is clamped into immobility by removable covers over open faces of the mounting brackets. During installation, the mounting brackets engage the positioning tool rather than the scale channel and with the flexible-socket couplings free to gimbal. The mounting brackets are fixed to the machine tool at a fixed axial spacing determined by the length of the positioning tool but at whatever angular attitude best suits the supporting surface of the machine tool. The positioning tool is then removed and replaced by the scale channel. The head assembly is fixed to a stationary stand opposite the scale channel.
    Type: Grant
    Filed: August 28, 1985
    Date of Patent: March 17, 1987
    Assignee: Sony Magnescale Incorporation
    Inventors: Kazuo Nagaoka, Tomoichi Isobe, Toshihiko Kanasugi, Nobuyuki Suzuki, Sadao Wakabayashi, Kenji Uchida, Hideharu Tsukamoto, Mitsuru Ohno, Tadahiko Shimano