Patents by Inventor Mitsushiro YAMAGUCHI

Mitsushiro YAMAGUCHI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8681332
    Abstract: There is provided a method of measuring a diffusion characteristic value (for example, a diffusion constant) of a light-emitting particle using the scanning molecule counting method using the optical measurement with a confocal microscope or a multiphoton microscope. The inventive method of measuring a diffusion characteristic value of a light-emitting particle is characterized to measure light intensity from the light detection region with moving the position of the light detection region in the sample solution by changing an optical path of the optical system to generate light intensity data and to compute a diffusion characteristic value of the light-emitting particle based on a deviation time from a moving cycle time of the light detection region in an interval of generation times of two or more signals corresponding to a same light-emitting particle on the light intensity data.
    Type: Grant
    Filed: April 12, 2013
    Date of Patent: March 25, 2014
    Assignee: Olympus Corporation
    Inventors: Tetsuya Tanabe, Mitsushiro Yamaguchi
  • Publication number: 20130338968
    Abstract: There is provided a structure to make the setting of a criterion for eliminating noises easy in the scanning molecule counting method. In the inventive optical analysis technique of detecting light of a light-emitting particle in a sample solution, time series light intensity data of light from a light detection region detected with moving the position of the light detection region in the sample solution is generated, and a signal of a light-emitting particle individually is detected in the time series light intensity data, wherein a signal having a light intensity in a light intensity range set based upon a signal generation frequency integrated value distribution which is a distribution, obtained by using as a variable an intensity of a signal, of integrated values of generation frequencies of signals having an intensity not lower than the variable is extracted as the signal of the light-emitting particle.
    Type: Application
    Filed: August 19, 2013
    Publication date: December 19, 2013
    Applicant: OLYMPUS CORPORATION
    Inventors: Takuya Hanashi, Mitsushiro Yamaguchi, Tetsuya Tanabe
  • Patent number: 8541759
    Abstract: The inventive optical analysis technique uses an optical system capable of detecting light from a micro region in a solution, such as an optical system of a confocal microscope or a multiphoton microscope, to detect the light from the light-emitting particle to be observed while moving the position of the micro region in the sample solution (while scanning the inside of the sample solution with the micro region); generates time series light intensity data, computes a characteristic value of the light intensity indicating the presence or absence of the light from a single light-emitting particle in every time section of a predetermined width in the light intensity data; and detects the light-emitting particle crossing the inside of the micro region individually using the characteristic value, thereby enabling the counting of the light-emitting particle(s) or the acquisition of the information on the concentration or number density of the light-emitting particle.
    Type: Grant
    Filed: August 28, 2012
    Date of Patent: September 24, 2013
    Assignee: Olympus Corporation
    Inventors: Mitsushiro Yamaguchi, Seiji Kondo, Tetsuya Tanabe, Kunio Hori
  • Publication number: 20130242307
    Abstract: The inventive technique of detecting and analyzing light from a light-emitting particle in accordance with the scanning molecule counting method using an optical measurement with a confocal microscope or a multiphoton microscope is characterized by detecting intensities of components of two or more wavelength bands of light from a light detection region of an optical system with moving the position of the light detection region in a sample solution by changing the optical path of the optical system of the microscope; detecting individually signals of the light from each light-emitting particle in the intensities of the components of the two or more wavelength bands of the detected light; and identifying a kind of light-emitting particle based on the intensities of the components of the two or more wavelength bands of the signals of the light of the detected light-emitting particle.
    Type: Application
    Filed: May 7, 2013
    Publication date: September 19, 2013
    Applicant: OLYMPUS CORPORATION
    Inventors: Takuya Hanashi, Tetsuya Tanabe, Mitsushiro Yamaguchi
  • Publication number: 20130228706
    Abstract: There is provided an optical analysis technique which observes a polarization characteristic of a light-emitting particle using the scanning molecule counting method using an optical measurement with a confocal microscope or a multiphoton microscope. In the inventive optical analysis technique, the light detection region is irradiated with excitation light consisting of predetermined polarized light component(s) and the intensity of at least one polarized light component of the light from the light detection region is detected with moving the position of the light detection region of the optical system in a sample solution; a signal of each light-emitting particle is detected individually in the intensity of at least one polarized light component; and based on the intensity of at least one polarized light component of the signal of the detected light-emitting particle, the polarization characteristic value of the light-emitting particle is computed.
    Type: Application
    Filed: April 17, 2013
    Publication date: September 5, 2013
    Applicant: OLYMPUS CORPORATION
    Inventors: Mitsushiro Yamaguchi, Tetsuya Tanabe
  • Publication number: 20130230874
    Abstract: There is provided an optical analysis technique enabling identification of a kind of light-emitting particle corresponding to a signal on a time series light intensity data or identification of a signal corresponding to light-emitting particles other than a particle to be observed in an optical measurement using a confocal microscope or a multiphoton microscope. The inventive optical analysis technique measures simultaneously and separately intensities of lights of two or more wavelength bands from a light detection region in a sample solution containing light-emitting particles of two or more kinds to generate time series light intensity data of the respective wavelength bands; detects signals simultaneously generated on the time series light intensity data of at least two wavelength bands; and identifies the simultaneously generated signals as signals of a light-emitting particle of at least one specific kind.
    Type: Application
    Filed: March 7, 2013
    Publication date: September 5, 2013
    Applicant: OLYMPUS CORPORATION
    Inventors: Takuya Hanashi, Tetsuya Tanabe, Mitsushiro Yamaguchi, Hidetaka Nakata
  • Publication number: 20130228705
    Abstract: There is provided a scanning molecule counting method using an optical measurement with a confocal microscope or a multiphoton microscope, enabling characterization of a light-emitting particle or identification of a light-emitting particle with emitted light intensity of a single light-emitting particle measured individually. In the inventive optical analysis technique, with reference to the ratio of the intensities of simultaneously generated signals of the lights of at least two light-emitting sites having mutually different emission wavelengths, possessed by a light-emitting particle contained in a sample solution, the intensities being measured with moving the position of the light detection region of an optical system by changing the optical path of the optical system, a single light-emitting particle corresponding to the signals is identified, and the kind, the size, etc. of the light-emitting particle is identified.
    Type: Application
    Filed: March 7, 2013
    Publication date: September 5, 2013
    Applicant: OLYMPUS CORPORATION
    Inventors: Kazutaka Nishikawa, Tetsuya Tanabe, Mitsushiro Yamaguchi
  • Patent number: 8471220
    Abstract: The inventive optical analysis technique uses an optical system capable of detecting light from a micro region in a solution, such as an optical system of a confocal microscope or a multiphoton microscope, to detect the light from the light-emitting particle to be observed while moving the position of the micro region in the sample solution (while scanning the inside of the sample solution with the micro region); generates time series light intensity data, and after smoothing the time series light intensity data; and detects in the smoothed time series light intensity data the light-emitting particle crossing the inside of the micro region individually, thereby enabling the counting of the light-emitting particle(s) or the acquisition of the information on the concentration or number density of the light-emitting particle.
    Type: Grant
    Filed: August 29, 2012
    Date of Patent: June 25, 2013
    Assignee: Olympus Corporation
    Inventors: Mitsushiro Yamaguchi, Seiji Kondo, Tetsuya Tanabe, Kunio Hori
  • Publication number: 20130048875
    Abstract: The inventive optical analysis technique uses an optical system capable of detecting light from a micro region in a solution, such as an optical system of a confocal microscope or a multiphoton microscope, to detect the light from the light-emitting particle to be observed while moving the position of the micro region in the sample solution (while scanning the inside of the sample solution with the micro region); generates time series light intensity data, and after smoothing the time series light intensity data; and detects in the smoothed time series light intensity data the light-emitting particle crossing the inside of the micro region individually, thereby enabling the counting of the light-emitting particle(s) or the acquisition of the information on the concentration or number density of the light-emitting particle.
    Type: Application
    Filed: August 29, 2012
    Publication date: February 28, 2013
    Applicant: OLYMPUS CORPORATION
    Inventors: Mitsushiro Yamaguchi, Seiji Kondo, Tetsuya Tanabe, Kunio Hori
  • Publication number: 20120318956
    Abstract: There is provided an optical analysis technique enabling the detection of the condition or characteristic of a particle to be observed contained at a low concentration or number density in a sample solution. The inventive optical analysis technique uses an optical system capable of detecting light from a micro region in a solution, such as an optical system of a confocal microscope or a multiphoton microscope, to detect the light from the light-emitting particle to be observed while moving the position of the micro region in the sample solution (while scanning the inside of the sample solution with the micro region), thereby detecting individually the light-emitting particle crossing the inside of the micro region to enable the counting of the light-emitting particle(s) or the acquisition of the information on the concentration or number density of the light-emitting particle.
    Type: Application
    Filed: August 28, 2012
    Publication date: December 20, 2012
    Applicant: OLYMPUS CORPORATION
    Inventors: Mitsushiro Yamaguchi, Seiji Kondo, Tetsuya Tanabe, Kunio Hori
  • Publication number: 20120319009
    Abstract: The inventive optical analysis technique uses an optical system capable of detecting light from a micro region in a solution, such as an optical system of a confocal microscope or a multiphoton microscope, to detect the light from the light-emitting particle to be observed while moving the position of the micro region in the sample solution (while scanning the inside of the sample solution with the micro region); generates time series light intensity data, computes a characteristic value of the light intensity indicating the presence or absence of the light from a single light-emitting particle in every time section of a predetermined width in the light intensity data; and detects the light-emitting particle crossing the inside of the micro region individually using the characteristic value, thereby enabling the counting of the light-emitting particle(s) or the acquisition of the information on the concentration or number density of the light-emitting particle.
    Type: Application
    Filed: August 28, 2012
    Publication date: December 20, 2012
    Applicant: OLYMPUS CORPORATION
    Inventors: Mitsushiro Yamaguchi, Seiji Kondo, Tetsuya Tanabe, Kunio Hori
  • Publication number: 20100301231
    Abstract: There are provided an apparatus, a method and a computer program for fluorescence correlation spectroscopy (FCS), which can reduce the number of times of fluorescence measurements of control samples as few as possible for a measurement by FCS in detecting existence ratios of the respective components contained in a sample. In the inventive apparatus, method and computer program for detecting an existence ratio of each of components with a fluorescent label contained in a solution sample by FCS, using a value of a ratio of a translational diffusion time of each of the components based upon the knowledge that a ratio of a translational diffusion time of each of the components is conservative under different measurement conditions etc.
    Type: Application
    Filed: May 10, 2010
    Publication date: December 2, 2010
    Applicant: OLYMPUS CORPORATION
    Inventor: Mitsushiro YAMAGUCHI
  • Publication number: 20080117421
    Abstract: An optical measurement apparatus which includes at least one each of a light source, an optical element, a photodetector, and a sample container, and which measures a physical property of a biological sample in a solution retained by the sample container according to a plurality of kinds of measurement items, wherein a combination of the light source, the optical element, and the photodetector is selected or changed according to the measurement item, and a position where the photodetector is located is adjusted according to the selection or change based on intensity of light accepted by the photodetector.
    Type: Application
    Filed: January 15, 2008
    Publication date: May 22, 2008
    Applicant: OLYMPUS CORPORATION
    Inventors: Mitsushiro YAMAGUCHI, Mitsuo HARADA