Patents by Inventor Mladen Barbic

Mladen Barbic has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11627937
    Abstract: A gripping apparatus includes: a temperature adjusting device held in a substrate wherein the substrate defines an open region; a phase change material held within the open region and thermally coupled with the temperature adjusting device such that a temperature change in the temperature adjusting device causes a temperature change in the phase change material; and a controller connected to the temperature adjusting device and configured to send a signal to the temperature adjusting device to change its temperature and thereby change the temperature of the phase change material that is thermally coupled with the temperature adjusting device. The phase change material is either in a solid state and configured to grip a stick or in a liquid state and the phase change material and configured to loosen its grip on the stick such that the stick is capable of moving through the phase change material.
    Type: Grant
    Filed: August 25, 2022
    Date of Patent: April 18, 2023
    Assignee: Howard Hughes Medical Institute
    Inventors: Mladen Barbic, Richard Smith
  • Publication number: 20220401065
    Abstract: A gripping apparatus includes: a temperature adjusting device held in a substrate wherein the substrate defines an open region; a phase change material held within the open region and thermally coupled with the temperature adjusting device such that a temperature change in the temperature adjusting device causes a temperature change in the phase change material; and a controller connected to the temperature adjusting device and configured to send a signal to the temperature adjusting device to change its temperature and thereby change the temperature of the phase change material that is thermally coupled with the temperature adjusting device. The phase change material is either in a solid state and configured to grip a stick or in a liquid state and the phase change material and configured to loosen its grip on the stick such that the stick is capable of moving through the phase change material.
    Type: Application
    Filed: August 25, 2022
    Publication date: December 22, 2022
    Inventors: Mladen Barbic, Richard Smith
  • Patent number: 11471125
    Abstract: A gripping apparatus includes: a temperature adjusting device held in a substrate wherein the substrate defines an open region; a phase change material held within the open region and thermally coupled with the temperature adjusting device such that a temperature change in the temperature adjusting device causes a temperature change in the phase change material; and a controller connected to the temperature adjusting device and configured to send a signal to the temperature adjusting device to change its temperature and thereby change the temperature of the phase change material that is thermally coupled with the temperature adjusting device. The phase change material is either in a solid state and configured to grip a stick or in a liquid state and the phase change material and configured to loosen its grip on the stick such that the stick is capable of moving through the phase change material.
    Type: Grant
    Filed: August 12, 2019
    Date of Patent: October 18, 2022
    Assignee: Howard Hughes Medical Institute
    Inventors: Mladen Barbic, Richard Smith
  • Publication number: 20210088606
    Abstract: An apparatus includes a magnetic apparatus that defines an actuation volume that is large enough to accommodate a sample, the magnetic apparatus including a magnet that is configured to create a magnetic field having a magnitude B in the sample when supplied with a DC current; at least one biological construct within the sample, the biological construct configured to change its status in response to a change in a property; and at least one magnetocaloric actuator coupled with the biological construct. A change in a characteristic in the actuation volume causes the property of the magnetocaloric actuator to change, which causes a change in the status of the biological construct.
    Type: Application
    Filed: December 3, 2020
    Publication date: March 25, 2021
    Inventor: Mladen Barbic
  • Patent number: 10908237
    Abstract: An apparatus includes a magnetic apparatus that defines an actuation volume that is large enough to accommodate a sample, the magnetic apparatus including a magnet that is configured to create a magnetic field having a magnitude B in the sample when supplied with a DC current; at least one biological construct within the sample, the biological construct configured to change its status in response to a change in a property; and at least one magnetocaloric actuator coupled with the biological construct. A change in a characteristic in the actuation volume causes the property of the magnetocaloric actuator to change, which causes a change in the status of the biological construct.
    Type: Grant
    Filed: April 4, 2018
    Date of Patent: February 2, 2021
    Assignee: Howard Hughes Medical Institute
    Inventor: Mladen Barbic
  • Publication number: 20200046317
    Abstract: A gripping apparatus includes: a temperature adjusting device held in a substrate wherein the substrate defines an open region; a phase change material held within the open region and thermally coupled with the temperature adjusting device such that a temperature change in the temperature adjusting device causes a temperature change in the phase change material; and a controller connected to the temperature adjusting device and configured to send a signal to the temperature adjusting device to change its temperature and thereby change the temperature of the phase change material that is thermally coupled with the temperature adjusting device. The phase change material is either in a solid state and configured to grip a stick or in a liquid state and the phase change material and configured to loosen its grip on the stick such that the stick is capable of moving through the phase change material.
    Type: Application
    Filed: August 12, 2019
    Publication date: February 13, 2020
    Inventors: Mladen Barbic, Richard Smith
  • Publication number: 20180292479
    Abstract: An apparatus includes a magnetic apparatus that defines an actuation volume that is large enough to accommodate a sample, the magnetic apparatus including a magnet that is configured to create a magnetic field having a magnitude B in the sample when supplied with a DC current; at least one biological construct within the sample, the biological construct configured to change its status in response to a change in a property; and at least one magnetocaloric actuator coupled with the biological construct. A change in a characteristic in the actuation volume causes the property of the magnetocaloric actuator to change, which causes a change in the status of the biological construct.
    Type: Application
    Filed: April 4, 2018
    Publication date: October 11, 2018
    Inventor: Mladen Barbic
  • Publication number: 20180292478
    Abstract: An imaging apparatus for imaging a sample includes a magnetic apparatus that defines a sample volume that is large enough to accommodate the sample to be imaged, and one or more magnetically manipulatable materials within the sample. The magnetic apparatus includes a magnet that is configured to create a magnetic field having a magnitude B in the sample Each magnetically manipulatable material is a material that exhibits a transition between a first magnetic state and a second magnetic state in response to a change in a property associated with the sample while the magnetic field having the magnitude B is maintained in the sample.
    Type: Application
    Filed: April 4, 2018
    Publication date: October 11, 2018
    Inventors: Mladen Barbic, Stephen Dodd, Herman Douglas Morris, Alan Koretsky
  • Patent number: 9880149
    Abstract: A glass pipette such as an electrode for electrophysiological recording is coated with quantum dots. This greatly aids the ability to observe the glass pipette, particular in tissue as the quantum dots provide an excellent performance under two-photon illumination used to visualize objects at depths of hundreds of microns.
    Type: Grant
    Filed: February 5, 2014
    Date of Patent: January 30, 2018
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Igor L. Medintz, Bertalan K. Andrasfalvy, Kimihiro Susumu, James B. Delehanty, Alan L. Huston, John J. Macklin, Mladen Barbic
  • Publication number: 20150147803
    Abstract: A glass pipette such as an electrode for electrophysiological recording is coated with quantum dots. This greatly aids the ability to observe the glass pipette, particular in tissue as the quantum dots provide an excellent performance under two-photon illumination used to visualize objects at depths of hundreds of microns.
    Type: Application
    Filed: February 5, 2014
    Publication date: May 28, 2015
    Applicants: Institute of Experimental Medicine of the Hungarian Academy of Sciences, Howard Hughes Medical Institute, The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Igor L. Medintz, Bertalan K. Andrasfalvy, Kimihiro Susumu, James B. Delehanty, Alan L. Huston, John J. Macklin, Mladen Barbic
  • Patent number: 8356763
    Abstract: Methods and arrangements to lyse a biological sample are described. The arrangements comprise a lysis tube containing the sample, one or more electromagnets generating a magnetic field, and one or more permanent magnets inside the lysis tube. The permanent magnets move and lyse the sample when a magnetic field is generated by the electromagnets.
    Type: Grant
    Filed: March 22, 2012
    Date of Patent: January 22, 2013
    Assignee: California Institute of Technology
    Inventors: Aditya Rajagopal, Axel Scherer, Mladen Barbic
  • Publication number: 20120175441
    Abstract: Methods and arrangements to lyse a biological sample are described. The arrangements comprise a lysis tube containing the sample, one or more electromagnets generating a magnetic field, and one or more permanent magnets inside the lysis tube. The permanent magnets move and lyse the sample when a magnetic field is generated by the electromagnets.
    Type: Application
    Filed: March 22, 2012
    Publication date: July 12, 2012
    Inventors: Aditya RAJAGOPAL, Axel SCHERER, Mladen BARBIC
  • Patent number: 8201765
    Abstract: Methods and arrangements to lyse a biological sample are described. The arrangements comprise a lysis tube containing the sample, one or more electromagnets generating a magnetic field, and one or more permanent magnets inside the lysis tube. The permanent magnets move and lyse the sample when a magnetic field is generated by the electromagnets.
    Type: Grant
    Filed: September 4, 2009
    Date of Patent: June 19, 2012
    Assignee: California Institute of Technology
    Inventors: Aditya Rajagopal, Axel Scherer, Mladen Barbic
  • Patent number: 8197234
    Abstract: An electromagnetic actuator for a microfluidic pump of the type that causes periodic pinching and releasing against the walls of a fluidic channel, e.g., a tube. At least one permanent magnet is placed against the walls of the fluidic channel, and located in an area with magnetic fields, produced by coils that are radially symmetric to the channel. The permanent magnet is cause to press and release against the wall of the fluid channel to cause a fluid flow through the channel.
    Type: Grant
    Filed: May 24, 2005
    Date of Patent: June 12, 2012
    Assignee: California Institute of Technology
    Inventors: Morteza Gharib, Derek Rinderknecht, Mladen Barbic
  • Patent number: 8170316
    Abstract: Tomographic imaging using an imaging sensor that has a stripe-like shape is disclosed where a stripe sensor is mechanically scanned over a sample at different angles. For a single stripe detector imaging, linear motion and angular rotation are required. Single stripe sensor imaging may be performed using an elongated inductive coil detector. By utilizing an array of parallel stripe sensors that can be individually addressed, two-dimensional imaging can be performed with rotation only, eliminating the requirement for linear motion, e.g. with parallel coils array. Imaging with a stripe-type sensor of particular width and thickness (where width is much larger than thickness) is resolution limited only by the thickness (smaller parameter) of the sensor. Multiple sensor families can be produced where this imaging technique may be beneficial such as magneto-resistive, inductive, SQUID, and Hall effect sensors, and particularly in the field of magnetic resonance imaging (MRI).
    Type: Grant
    Filed: October 1, 2008
    Date of Patent: May 1, 2012
    Assignee: California Institute of Technology
    Inventors: Mladen Barbic, Axel Scherer
  • Patent number: 7892427
    Abstract: Apparatus and method for manipulating particles on a micro- or nano-scale. An embodiment of the present invention includes a magnetic micro-manipulation technique that utilizes micro-coils and soft magnetic microscopic wires for localized manipulation of particles. Another embodiment of the present invention uses magneto-static interaction between two magnetic microscopic wires to mechanically manipulate particles. Yet another embodiment of the present invention combines a magnetic particle with a magnetic manipulator or other device for generating magnetic fields to operate as a micro-fluidic micro-motor. Other embodiments of the present invention employ a magnetic separation system employing porous membranes partially filled with magnetic wires.
    Type: Grant
    Filed: August 28, 2008
    Date of Patent: February 22, 2011
    Assignee: California Institute of Technology
    Inventors: Mladen Barbic, Jack J. Mock, Andrew P. Gray
  • Publication number: 20100068781
    Abstract: Methods and arrangements to lyse a biological sample are described. The arrangements comprise a lysis tube containing the sample, one or more electromagnets generating a magnetic field, and one or more permanent magnets inside the lysis tube. The permanent magnets move and lyse the sample when a magnetic field is generated by the electromagnets.
    Type: Application
    Filed: September 4, 2009
    Publication date: March 18, 2010
    Inventors: Aditya Rajagopal, Axel Scherer, Mladen Barbic
  • Publication number: 20090092509
    Abstract: Apparatus and method for manipulating particles on a micro- or nano-scale. An embodiment of the present invention includes a magnetic micro-manipulation technique that utilizes micro-coils and soft magnetic microscopic wires for localized manipulation of particles. Another embodiment of the present invention uses magneto-static interaction between two magnetic microscopic wires to mechanically manipulate particles. Yet another embodiment of the present invention combines a magnetic particle with a magnetic manipulator or other device for generating magnetic fields to operate as a micro-fluidic micro-motor. Other embodiments of the present invention employ a magnetic separation system employing porous membranes partially filled with magnetic wires.
    Type: Application
    Filed: August 28, 2008
    Publication date: April 9, 2009
    Inventors: Mladen Barbic, Jack J. Mock, Andrew P. Gray
  • Publication number: 20090087064
    Abstract: Tomographic imaging using an imaging sensor that has a stripe-like shape is disclosed where a stripe sensor is mechanically scanned over a sample at different angles. For a single stripe detector imaging, linear motion and angular rotation are required. Single stripe sensor imaging may be performed using an elongated inductive coil detector. By utilizing an array of parallel stripe sensors that can be individually addressed, two-dimensional imaging can be performed with rotation only, eliminating the requirement for linear motion, e.g. with parallel coils array. Imaging with a stripe-type sensor of particular width and thickness (where width is much larger than thickness) is resolution limited only by the thickness (smaller parameter) of the sensor. Multiple sensor families can be produced where this imaging technique may be beneficial such as magneto-resistive, inductive, SQUID, and Hall effect sensors, and particularly in the field of magnetic resonance imaging (MRI).
    Type: Application
    Filed: October 1, 2008
    Publication date: April 2, 2009
    Applicant: California Institute of Technology
    Inventors: Mladen Barbic, Axel Scherer
  • Publication number: 20070238971
    Abstract: Systems and methods for obtaining two- and three-dimensional magnetic resonance images by using azimuthally symmetric dipolar magnetic fields from magnetic spheres. A complete two- or three-dimensional structured rendering of a sample can be obtained without the motion of the sample relative to the sphere. Magnetic spheres in the range of 100 ?m and 100 nm are used with samples that are approximately one-tenth as large as the magnetic sphere. Sequential positioning of the integrated sample-sphere system in an external magnetic field at various angular orientations provides all the required imaging slices for successful computerized tomographic image reconstruction. The requirement to scan the sample relative to the magnetic tip is eliminated. Resolutions approaching atomic dimensions are expected to be obtained.
    Type: Application
    Filed: January 4, 2007
    Publication date: October 11, 2007
    Applicant: California Institute of Technology
    Inventors: Mladen Barbic, Axel Scherer