Patents by Inventor Mladen F. Trubelja

Mladen F. Trubelja has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11866816
    Abstract: An apparatus for use in a coating process includes a chamber, a crucible configured to hold a coating material in the chamber, an energy source operable to heat the interior of the chamber, a coating envelope situated with respect to the crucible, and at least one gas manifold located near the coating envelope. The at least one gas manifold is configured to provide a gas screen between the coating envelope and the crucible.
    Type: Grant
    Filed: March 18, 2019
    Date of Patent: January 9, 2024
    Assignee: RTX CORPORATION
    Inventors: Joseph A. DePalma, Mladen F. Trubelja, David A. Litton, Dmitri L. Novikov, Sergei F. Burlatsky
  • Publication number: 20190211440
    Abstract: An apparatus for use in a coating process includes a chamber, a crucible configured to hold a coating material in the chamber, an energy source operable to heat the interior of the chamber, a coating envelope situated with respect to the crucible, and at least one gas manifold located near the coating envelope. The at least one gas manifold is configured to provide a gas screen between the coating envelope and the crucible.
    Type: Application
    Filed: March 18, 2019
    Publication date: July 11, 2019
    Inventors: Joseph A. DePalma, Mladen F. Trubelja, David A. Litton, Dmitri L. Novikov, Sergei F. Burlatsky
  • Patent number: 10233533
    Abstract: A method for use in a coating process includes pre-heating a substrate in the presence of a coating material and shielding the substrate during the pre-heating from premature deposition of the coating material by establishing a gas screen between the substrate and the coating material. An apparatus for use in a coating process includes a chamber, a crucible that is configured to hold a coating material in the chamber, an energy source operable to heat the interior of the chamber, a coating envelope situated with respect to the crucible, and at least one gas manifold located near the coating envelope. The at least one gas manifold is configured to provide a gas screen between the coating envelope and the crucible. A second manifold provides gas during a later coating deposition to compress a vapor plume of the coating material and focus the plume on the substrate to increase deposition rate.
    Type: Grant
    Filed: January 7, 2015
    Date of Patent: March 19, 2019
    Assignee: UNITED TECHNOLOGIES CORPORATION
    Inventors: Joseph A. DePalma, Mladen F. Trubelja, David A. Litton, Dmitri L. Novikov, Sergei F. Burlatsky
  • Publication number: 20190040525
    Abstract: An apparatus for use in a physical vapor deposition coating process includes a chamber, a crucible configured to hold a ceramic coating material in the chamber, an energy source operable to heat the interior of the chamber, a fixture for holding at least one substrate in the chamber, an actuator operable to rotate the fixture, and a controller configured to establish a plume of the ceramic coating material in the chamber to deposit the ceramic coating material from the plume onto the at least one substrate and form a ceramic coating thereon, and during the deposition, rotate the at least one substrate at a rotational speed selected with respect to deposition rate of the ceramic coating material onto the at least one substrate.
    Type: Application
    Filed: October 11, 2018
    Publication date: February 7, 2019
    Inventors: Mladen F. Trubelja, David A. Litton, Joseph A. DePalma, James W. Neal, Michael Maloney, Russell A. Beers, Brian T. Hazel, Glenn A. Cotnoir
  • Patent number: 10145006
    Abstract: A method for use in a physical vapor deposition coating process includes depositing a ceramic coating material from a plume onto at least one substrate to form a ceramic coating thereon, and during the deposition, rotating the at least one substrate at rotational speed selected with respect to deposition rate of the ceramic coating material onto the at least one substrate.
    Type: Grant
    Filed: January 8, 2015
    Date of Patent: December 4, 2018
    Assignee: UNITED TECHNOLOGIES CORPORATION
    Inventors: Mladen F. Trubelja, David A. Litton, Joseph A. DePalma, James W. Neal, Michael Maloney, Russell A. Beers, Brian T. Hazel, Glenn A. Cotnoir
  • Patent number: 10113226
    Abstract: A coated article has: a metallic substrate (22); a bondcoat (30); and a thermal barrier coating (TBC) (28). The bondcoat has a first layer (32) and a second layer (34), the first layer having a lower Cr content than the second layer.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: October 30, 2018
    Assignee: United Technologies Corporation
    Inventors: Mladen F. Trubelja, Dinesh K. Gupta, Brian S. Tryon, Mark T. Ucasz, Benjamin J. Zimmerman
  • Patent number: 9506140
    Abstract: A coated article has: a metallic substrate (22); a bondcoat (30); and a thermal barrier coating (TBC) (28). The bondcoat has a first layer (32) and a second layer (34), the first layer having a lower Cr content than the second layer.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: November 29, 2016
    Assignee: United Technologies Corporation
    Inventors: Mladen F. Trubelja, Dinesh K. Gupta, Brian S. Tryon, Mark T. Ucasz, Benjamin J. Zimmerman
  • Publication number: 20160333465
    Abstract: A method for use in a physical vapor deposition coating process includes depositing a ceramic coating material from a plume onto at least one substrate to form a ceramic coating thereon, and during the deposition, rotating the at least one substrate at rotational speed selected with respect to deposition rate of the ceramic coating material onto the at least one substrate.
    Type: Application
    Filed: January 8, 2015
    Publication date: November 17, 2016
    Applicant: United Technologies Corporation
    Inventors: Mladen F. Trubelja, David A. Litton, Joseph A. DePalma, James W. Neal, Michael Maloney, Russell A. Beers, Brian T. Hazel, Glenn A. Cotnoir
  • Publication number: 20160326628
    Abstract: A method for use in a coating process includes pre-heating a substrate in the presence of a coating material and shielding the substrate during the pre-heating from premature deposition of the coating material by establishing a gas screen between the substrate and the coating material. An apparatus for use in a coating process includes a chamber, a crucible that is configured to hold a coating material in the chamber, an energy source operable to heat the interior of the chamber, a coating envelope situated with respect to the crucible, and at least one gas manifold located near the coating envelope. The at least one gas manifold is configured to provide a gas screen between the coating envelope and the crucible. A second manifold provides gas during a later coating deposition to compress a vapor plume of the coating material and focus the plume on the substrate to increase deposition rate.
    Type: Application
    Filed: January 7, 2015
    Publication date: November 10, 2016
    Applicant: United Technologies Corporation
    Inventors: Joseph A. DePalma, Mladen F. Trubelja, David A. Litton, Dmitri L. Novikov, Sergei F. Burlatsky
  • Publication number: 20160040281
    Abstract: A coated article has: a metallic substrate (22); a bondcoat (30); and a thermal barrier coating (TBC) (28). The bondcoat has a first layer (32) and a second layer (34), the first layer having a lower Cr content than the second layer.
    Type: Application
    Filed: March 13, 2014
    Publication date: February 11, 2016
    Applicant: UNITED TECHNOLOGIES CORPORATION
    Inventors: Mladen F. Trubelja, Dinesh K. Gupta, Brian S. Tryon, Mark T. Ucasz, Benjamin J. Zimmerman
  • Publication number: 20140272456
    Abstract: A coated article has: a metallic substrate (22); a bondcoat (30); and a thermal barrier coating (TBC) (28). The bondcoat has a first layer (32) and a second layer (34), the first layer having a lower Cr content than the second layer.
    Type: Application
    Filed: March 13, 2014
    Publication date: September 18, 2014
    Applicant: United Technologies Corporation
    Inventors: Mladen F. Trubelja, Dinesh K. Gupta, Brian S. Tryon, Mark T. Ucasz, Benjamin J. Zimmerman
  • Patent number: 7291408
    Abstract: A ceramic material having particular utility as a thermal insulating or thermal barrier coating on metallic substrates is provided. The ceramic material broadly comprises at least one oxide and the balance comprising a first oxide selected from the group consisting of zirconia, ceria, and hafnia. The at least one oxide has a formula A2O3 where A is selected from the group consisting of La, Pr, Nd, Sm, Eu, Tb, In, Sc, Y, Dy, Ho, Er, Tm, Yb, Lu, and mixtures thereof. The present invention also broadly relates to an article having a metal substrate and a thermal barrier coating as discussed above.
    Type: Grant
    Filed: August 12, 2003
    Date of Patent: November 6, 2007
    Assignee: United Technologies Corporation
    Inventors: David A. Litton, Nicholas E. Ulion, Mladen F. Trubelja, Michael J. Maloney, Sunil Govinda Warrier
  • Patent number: 7226672
    Abstract: A turbine component has a substrate formed from a ceramic material selected from the group consisting of a monolithic ceramic material and a composite ceramic material and a thermal barrier coating bonded to the substrate. In one embodiment, the ceramic material forming the substrate is selected from the group of silicon nitride and self-reinforced silicon nitride. In another embodiment, the ceramic material forming the substrate is selected from the group consisting of a silicon carbide-silicon carbide material and a carbon-carbon material. At least one bond coat layer may be interposed between the substrate and the thermal barrier coating.
    Type: Grant
    Filed: March 17, 2004
    Date of Patent: June 5, 2007
    Assignee: United Technologies Corporation
    Inventors: David A. Litton, Nicholas E. Ulion, Mladen F. Trubelja, Michael J. Maloney, Sunil Govinda Warrier
  • Publication number: 20040175597
    Abstract: A turbine component has a substrate formed from a ceramic material selected from the group consisting of a monolithic ceramic material and a composite ceramic material and a thermal barrier coating bonded to the substrate. In one embodiment, the ceramic material forming the substrate is selected from the group of silicon nitride and self-reinforced silicon nitride. In another embodiment, the ceramic material forming the substrate is selected from the group consisting of a silicon carbide-silicon carbide material and a carbon-carbon material. At least one bond coat layer may be interposed between the substrate and the thermal barrier coating.
    Type: Application
    Filed: March 17, 2004
    Publication date: September 9, 2004
    Inventors: David A. Litton, Nicholas E. Ulion, Mladen F. Trubelja, Michael J. Maloney, Sunil Govinda Warrier
  • Patent number: 6730422
    Abstract: A ceramic material having particular utility as a thermal insulating or thermal barrier coating on metallic substrates is provided. The ceramic material broadly comprises at least one oxide and the balance comprising a first oxide selected from the group consisting of zirconia, ceria, and hafnia. The at least one oxide has a formula A2O3 where A is selected from the group consisting of La, Pr, Nd, Sm, Eu, Th, In, Sc, Y, Dy, Ho, Er, Tm, Yb, Lu, and mixtures thereof. The present invention also broadly relates to an article having a metal substrate and a thermal barrier coating as discussed above.
    Type: Grant
    Filed: August 21, 2002
    Date of Patent: May 4, 2004
    Assignee: United Technologies Corporation
    Inventors: David A. Litton, Nicholas E. Ulion, Mladen F. Trubelja, Michael J. Maloney, Sunil Govinda Warrier
  • Publication number: 20040038086
    Abstract: A ceramic material having particular utility as a thermal insulating or thermal barrier coating on metallic substrates is provided. The ceramic material broadly comprises at least one lanthanide sesquioxide and the balance comprising a first oxide selected from the group consisting of zirconia, ceria, and hafnia. The lanthanide sesquioxide has a formula A2O3 where A is selected from the group consisting of La, Pr, Nd, Sm, Eu, Tb, In, Sc, Y, Dy, Ho, Er, Tm, Yb, Lu, and mixtures thereof. The present invention also broadly relates to an article having a metal substrate and a thermal barrier coating as discussed above.
    Type: Application
    Filed: August 21, 2002
    Publication date: February 26, 2004
    Inventors: David A. Litton, Nicholas E. Ulion, Mladen F. Trubelja, Michael J. Maloney, Sunil Govinda Warrier
  • Publication number: 20040038085
    Abstract: A ceramic material having particular utility as a thermal insulating or thermal barrier coating on metallic substrates is provided. The ceramic material broadly comprises at least one oxide and the balance comprising a first oxide selected from the group consisting of zirconia, ceria, and hafnia. The at least one oxide has a formula A2O3 where A is selected from the group consisting of La, Pr, Nd, Sm, Eu, Tb, In, Sc, Y, Dy, Ho, Er, Tm, Yb, Lu, and mixtures thereof. The present invention also broadly relates to an article having a metal substrate and a thermal barrier coating as discussed above.
    Type: Application
    Filed: August 12, 2003
    Publication date: February 26, 2004
    Inventors: David A. Litton, Nicholas E. Ulion, Mladen F. Trubelja, Michael J. Maloney, Sunil Govinda Warrier
  • Publication number: 20030152814
    Abstract: A superalloy article is disclosed having a thermal barrier coating. The article comprises a superalloy substrate, an adherent alumina layer on the substrate, and a ceramic, thermally insulating layer on the alumina layer. The ceramic layer has an overall thickness and comprises a relatively strain tolerant, columnar grain ceramic on the alumina layer and relatively more thermally insulating ceramic on the columnar grain ceramic. The alumina layer may be formed using an alumina forming layer such as an overlay or aluminide bond coat, or the superalloy may comprise a material that is capable of forming an alumina layer. The ceramic layers may be formed of a stabilized zirconia or other suitable material, and may have the same or different compositions.
    Type: Application
    Filed: February 11, 2002
    Publication date: August 14, 2003
    Inventors: Dinesh Gupta, David L. Lambert, Mladen F. Trubelja, Michael J. Maloney, Nicholas E. Ulion, David A. Litton