Patents by Inventor Mobae Afeworki

Mobae Afeworki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200255747
    Abstract: Methods are provided for performing fluid catalytic cracking (and/or other hydrothermal processing for cracking of hydrocarbons) on a feedstock containing hydrocarbons in the presence of a catalyst that includes zeolite Beta that is stabilized toward hydrothermal conditions. The hydrothermally stabilized zeolite Beta (including any of the various polymorphs) corresponds to zeolite Beta that is formed without the use of an organic structure directing agent, and that is further stabilized by addition of one or more stabilizers, such as lanthanide series elements or phosphorus.
    Type: Application
    Filed: February 13, 2019
    Publication date: August 13, 2020
    Inventors: Allen W. Burton, Scott J. Weigel, Mobae Afeworki
  • Patent number: 10696558
    Abstract: A novel zeolitic imidazolate framework material comprises a partially saturated benzimidazole or a partially saturated substituted benzimidazole as a linking ligand, optionally together with unsaturated benzimidazole or an unsaturated substituted benzimidazole as a further linking ligand.
    Type: Grant
    Filed: March 19, 2018
    Date of Patent: June 30, 2020
    Assignee: ExxonMobil Research & Engineering Company
    Inventors: Joseph M. Falkowski, David C. Calabro, Yi Du, Mobae Afeworki, Simon C. Weston
  • Patent number: 10676368
    Abstract: The disclosure is related to various modified EMM-23 materials, processes, and uses of the same.
    Type: Grant
    Filed: June 28, 2018
    Date of Patent: June 9, 2020
    Assignee: ExxonMobil Research & Engineering Company
    Inventors: Allen W. Burton, Eugene Terefenko, Mobae Afeworki
  • Patent number: 10661262
    Abstract: Hydrogenation catalysts for aromatic hydrogenation including an organosilica material support, which is a polymer comprising independent units of a monomer of Formula [Z1OZ2OSiCH2]3 (I), wherein each Z1 and Z2 independently represent a hydrogen atom, a C1-C4 alkyl group or a bond to a silicon atom of another monomer; and at least one catalyst metal are provided herein. Methods of making the hydrogenation catalysts and processes of using, e.g., aromatic hydrogenation, the hydrogenation catalyst are also provided herein.
    Type: Grant
    Filed: July 10, 2018
    Date of Patent: May 26, 2020
    Assignee: ExxonMobil Research & Engineering Company
    Inventors: Paul Podsiadlo, Quanchang Li, David Charles Calabro, Jean Willem Lodewijk Beeckman, Lei Zhang, Kiara M. Benitez, Matthew Scott Ide, Stephen John McCarthy, Mobae Afeworki, Simon Christopher Weston, Preeti Kamakoti, Matu J. Shah, Wenyih Frank Lai, Meghan Kochersperger, David A. Griffin, Ivy D. Johnson
  • Patent number: 10662068
    Abstract: A molecular sieve having the framework structure of ZSM-5 is described comprising crystals having an external surface area in excess of 100 m2/g (as determined by the t-plot method for nitrogen physisorption) and a unique X-ray diffraction pattern.
    Type: Grant
    Filed: August 22, 2018
    Date of Patent: May 26, 2020
    Assignee: ExxonMobil Research & Engineering Company
    Inventors: Allen W. Burton, Christine E. Kliewer, Mobae Afeworki
  • Patent number: 10639619
    Abstract: Catalyst compositions with improved alkylation activity and corresponding methods for making such catalyst compositions are provided. The catalyst(s) correspond to solid acid catalysts formed by exposing a catalyst precursor with a zeolitic framework structure to a molten metal salt that includes fluorine, such as a molten metal fluoride. The resulting fluorinated solid acid catalysts can have improved alkylation activity while having a reduced or minimized amount of structural change due to the exposure to the molten metal fluoride. This is in contrast to fluorinated solid acid catalysts that are exposed to higher severity forms of fluorination, such as exposure to ammonium fluoride or HF. SnF2 is an example of a suitable molten metal fluoride.
    Type: Grant
    Filed: June 26, 2018
    Date of Patent: May 5, 2020
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Partha Nandi, Matthew S. Ide, Jihad M. Dakka, Quddus A. Nizami, Mobae Afeworki
  • Patent number: 10518257
    Abstract: A novel metal organic framework, EMM-33, is described having the structure of UiO-67 and comprising bisphosphonate linking ligands. EMM-33 has acid activity and is useful as a catalyst in olefin isomerization. Also disclosed is a process of making metal organic frameworks, such as EMM-33, by heterogeneous ligand exchange, in which linking ligands having a first bonding functionality in a host metal organic framework are exchanged with linking ligands having a second different bonding functionality in the framework.
    Type: Grant
    Filed: May 2, 2018
    Date of Patent: December 31, 2019
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Joseph M. Falkowski, Mobae Afeworki, Simon C. Weston
  • Patent number: 10500576
    Abstract: A novel metal organic framework, EMM-39, is described having the structure of UiO-66 and comprising bisphosphonate linking ligands. EMM-39 has acid activity and is useful as a catalyst in olefin isomerization. Also disclosed is a process of making metal organic frameworks, such as EMM-39, by heterogeneous ligand exchange, in which linking ligands having a first bonding functionality in a host metal organic framework are exchanged with linking ligands having a second different bonding functionality in the framework.
    Type: Grant
    Filed: May 2, 2018
    Date of Patent: December 10, 2019
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Joseph M. Falkowski, Mary S. Abdulkarim, Mobae Afeworki, Randall J. Meyer, Simon C. Weston
  • Patent number: 10464817
    Abstract: EMM-26 is a novel synthetic crystalline material having a single crystalline phase with a unique T-atom connectivity and X-ray diffraction pattern which identify it as a novel material. EMM-26 has a two-dimensional pore system defined by 10-membered rings of tetrahedrally coordinated atoms having pore dimensions of ˜6.3 ?ט3.2 ?. EMM-26 may be prepared with a organic structure directing agent, such as 1,6-bis(N-methylpyrrolidinium) hexane dications and/or 1,6-bis(N-methylpiperidinium) hexane dications. EMM-26 may be used in organic compound conversion and/or sorptive processes.
    Type: Grant
    Filed: August 28, 2015
    Date of Patent: November 5, 2019
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Allen Burton, Karl Strohmaier, Hilda Vroman, Mobae Afeworki, Peter I. Ravikovitch, Charanjit S. Paur, Xiaodong Zou, Peng Guo, Junliang Sun
  • Patent number: 10435514
    Abstract: Organosilica materials made from monomers including at least a source of silica that is reactive to polymerize, optionally in combination with at least one additional cyclic monomer. Methods for making such organosilica materials are also described herein.
    Type: Grant
    Filed: June 10, 2016
    Date of Patent: October 8, 2019
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: David C. Calabro, Ivy D. Johnson, Quanchang Li, Paul Podsiadlo, Simon C. Weston, Mobae Afeworki
  • Patent number: 10427147
    Abstract: A process is disclosed for producing small crystal, high surface area crystalline materials having the MFI and/or MEL framework-type, designated as EMM-30, using as a structure directing agent tetrabutylammonium cations and/or tetrabutylphosphonium cations, or 1,5-bis(N-tributylammonium)pentane dications, and/or 1,6-bis(N-tributylammonium)hexane dications. The compositions made according to that process, as well as the various dication compositions themselves, are also disclosed.
    Type: Grant
    Filed: January 18, 2017
    Date of Patent: October 1, 2019
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Allen W. Burton, Karl G. Strohmaier, Mobae Afeworki, Christine E. Kliewer
  • Publication number: 20190282997
    Abstract: Disclosed are zeolitic imidazolate framework (ZIF) compositions in which at least a portion of the ligands in its shell have been exchanged with other ligands, and methods of making such shell-ligand-exchanged ZIFs. Also disclosed is the use of such shell-ligand-exchanged ZIFs in hydrocarbon separation processes.
    Type: Application
    Filed: February 27, 2019
    Publication date: September 19, 2019
    Inventors: Joseph M. Falkowski, Mobae Afeworki, David C. Calabro, Yi Du, Himanshu Gupta, Simon C. Weston
  • Patent number: 10307747
    Abstract: A novel metal organic framework, EMM-42, is described having the structure of UiO-66 and comprising bisphosphonate linking ligands. EMM-42 has acid activity and is useful as a catalyst in olefin isomerization. Also disclosed is a process of making metal organic frameworks, such as EMM-42, by heterogeneous ligand exchange, in which linking ligands having a first bonding functionality in a host metal organic framework are exchanged with linking ligands having a second different bonding functionality in the framework.
    Type: Grant
    Filed: May 2, 2018
    Date of Patent: June 4, 2019
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Joseph M. Falkowski, Mary S. Abdulkarim, Mobae Afeworki, Randall J. Meyer, Simon C. Weston
  • Publication number: 20190062171
    Abstract: A molecular sieve having the framework structure of ZSM-5 is described comprising crystals having an external surface area in excess of 100 m2/g (as determined by the t-plot method for nitrogen physisorption) and a unique X-ray diffraction pattern.
    Type: Application
    Filed: August 22, 2018
    Publication date: February 28, 2019
    Inventors: Allen W. Burton, Christine E. Kliewer, Mobae Afeworki
  • Publication number: 20190031519
    Abstract: The disclosure is related to various modified EMM-23 materials, processes, and uses of the same.
    Type: Application
    Filed: June 28, 2018
    Publication date: January 31, 2019
    Inventors: Allen W. Burton, Eugene Terefenko, Mobae Afeworki
  • Publication number: 20190022631
    Abstract: Catalyst compositions with improved alkylation activity and corresponding methods for making such catalyst compositions are provided. The catalyst(s) correspond to solid acid catalysts formed by exposing a catalyst precursor with a zeolitic framework structure to a molten metal salt that includes fluorine, such as a molten metal fluoride. The resulting fluorinated solid acid catalysts can have improved alkylation activity while having a reduced or minimized amount of structural change due to the exposure to the molten metal fluoride. This is in contrast to fluorinated solid acid catalysts that are exposed to higher severity forms of fluorination, such as exposure to ammonium fluoride or HF. SnF2 is an example of a suitable molten metal fluoride.
    Type: Application
    Filed: June 26, 2018
    Publication date: January 24, 2019
    Inventors: Partha Nandi, Matthew S. Ide, Jihad M. Dakka, Quddus A. Nizami, Mobae Afeworki
  • Patent number: 10179839
    Abstract: Provided herein are compositions and methods for use of an organosilica material comprising a copolymer of at least one monomer of Formula [R1R2SiCH2]3 (I), wherein, R1 represents a C1-C4 alkoxy group; and R2 is a C1-C4 alkoxy group or a C1-C4 alkyl group; and at least one other monomer of Formula [(Z1O)xZ23-xSi—Z3—SZ4] (II), wherein, Z1 represents a hydrolysable functional group; Z2 represents a C1-C10 alkyl or aryl group; Z3 represents a C2-C11 cyclic or linear hydrocarbon; Z4 is either H or O3H; and x represents any one of integers 1, 2, and 3. The composition may be used as a support material to covalently attach transition metal cations, as a sorbent for olefin/paraffin separations, as a catalyst support for hydrogenation reactions, as a precursor for highly dispersed metal nanoparticles, or as a polar sorbent for crude feeds.
    Type: Grant
    Filed: November 3, 2017
    Date of Patent: January 15, 2019
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Joseph M. Falkowski, Mobae Afeworki, David C. Calabro, David A. Griffin, Simon C. Weston
  • Publication number: 20180318817
    Abstract: A novel metal organic framework, EMM-42, is described having the structure of UiO-66 and comprising bisphosphonate linking ligands. EMM-42 has acid activity and is useful as a catalyst in olefin isomerization. Also disclosed is a process of making metal organic frameworks, such as EMM-42, by heterogeneous ligand exchange, in which linking ligands having a first bonding functionality in a host metal organic framework are exchanged with linking ligands having a second different bonding functionality in the framework.
    Type: Application
    Filed: May 2, 2018
    Publication date: November 8, 2018
    Inventors: Joseph M. Falkowski, Mary S. Abdulkarim, Mobae Afeworki, Randall J. Meyer, Simon C. Weston
  • Publication number: 20180318816
    Abstract: A novel metal organic framework, EMM-39, is described having the structure of UiO-66 and comprising bisphosphonate linking ligands. EMM-39 has acid activity and is useful as a catalyst in olefin isomerization. Also disclosed is a process of making metal organic frameworks, such as EMM-39, by heterogeneous ligand exchange, in which linking ligands having a first bonding functionality in a host metal organic framework are exchanged with linking ligands having a second different bonding functionality in the framework.
    Type: Application
    Filed: May 2, 2018
    Publication date: November 8, 2018
    Inventors: Joseph M. Falkowski, Mary S. Abdulkarim, Mobae Afeworki, Randall J. Meyer, Simon C. Weston
  • Publication number: 20180318790
    Abstract: Hydrogenation catalysts for aromatic hydrogenation including an organosilica material support, which is a polymer comprising independent units of a monomer of Formula [Z1OZ2OSiCH2]3 (I), wherein each Z1 and Z2 independently represent a hydrogen atom, a C1-C4 alkyl group or a bond to a silicon atom of another monomer; and at least one catalyst metal are provided herein. Methods of making the hydrogenation catalysts and processes of using, e.g., aromatic hydrogenation, the hydrogenation catalyst are also provided herein.
    Type: Application
    Filed: July 10, 2018
    Publication date: November 8, 2018
    Inventors: Paul Podsiadlo, Quanchang Li, David Charles Calabro, Jean Willem Lodewijk Beeckman, Lei Zhang, Kiara M. Benitez, Matthew Scott Ide, Stephen John McCarthy, Mobae Afeworki, Simon Christopher Weston, Preeti Kamakoti, Matu J. Shah, Wenyih Frank Lai, Meghan Kochersperger, David A. Griffin, Ivy D. Johnson