Patents by Inventor Mogens Mogensen

Mogens Mogensen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160175768
    Abstract: The present invention relates to a method for electrochemical reduction of nitrogen oxides and concomitant oxidation of soot, as well as systems useful therefor. Such methods and systems in particular are useful in the context of exhaust gas purification, in particular for diesel engines.
    Type: Application
    Filed: August 8, 2014
    Publication date: June 23, 2016
    Inventors: Kent Kammer Hansen, Mogens Mogensen, Jing Shao
  • Patent number: 9263758
    Abstract: A reversible SOFC monolithic stack is provided which comprises: 1) a first component which comprises at least one porous metal containing layer (1) with a combined electrolyte and sealing layer on the porous metal containing layer (1); wherein the at least one porous metal containing layer (1) hosts an electrode; 2) a second component comprising at least one porous metal containing layer (1) with a combined interconnect and sealing layer on the porous metal containing layer; wherein the at least one porous metal containing layers hosts an electrode. Further provided is a method for preparing a reversible solid oxide fuel cell stack. The obtained solid oxide fuel cell stack has improved mechanical stability and high electrical performance, while the process for obtaining same is cost effective.
    Type: Grant
    Filed: August 31, 2006
    Date of Patent: February 16, 2016
    Assignee: Technical University of Denmark
    Inventors: Peter Halvor Larsen, Anders Smith, Mogens Mogensen, Soeren Linderoth, Peter Vang Hendriksen
  • Publication number: 20150308976
    Abstract: The present invention concerns a novel internal reference electrode as well as a novel sensing electrode for an improved internal reference oxygen sensor and the sensor employing same.
    Type: Application
    Filed: April 23, 2013
    Publication date: October 29, 2015
    Applicant: TECHNICAL UNIVERSITY OF DENMARK
    Inventors: Qiang Hu, Karin Vels Hansen, Mogens Mogensen
  • Patent number: 9077021
    Abstract: The present invention provides a solid oxide cell comprising a support layer, a first electrode layer, an electrolyte layer, and a second cathode layer, wherein at least one of the electrode layers comprises electrolyte material, a catalyst and agglomerated particles selected from the group consisting of alkali oxides, earth alkali oxides and transition metal oxides.
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: July 7, 2015
    Assignee: Technical University of Denmark
    Inventors: Peter Halvor Larsen, Mogens Mogensen, Peter Vang Hendriksen, Søren Linderoth, Ming Chen
  • Publication number: 20150056535
    Abstract: A multi-layer coating for protection of metals and alloys against oxidation at high temperatures is provided. The invention utilizes a multi-layer ceramic coating on metals or alloys for increased oxidation-resistance, comprising at least two layers, wherein the first layer (3) and the second layer (4) both comprise an oxide, and wherein the first layer (3) has a tracer diffusion coefficient for cations Mm+, where M is the scale forming element of the alloy, and the second layer (4) has a tracer diffusion coefficient for oxygen ions O2? satisfying the following formula: ? ln ? ? p ? ( O 2 ) in ln ? ? p ? ( O 2 ) ex ? ( D O + m 2 ? D M ) ? ? ? ln ? ? p ? ( O 2 ) < 5 · 10 - 13 ? cm 2 ? / ? s wherein p(O2)in, p(O2)ex, DM, and DO are as defined herein.
    Type: Application
    Filed: September 8, 2014
    Publication date: February 26, 2015
    Inventors: Peter Vang Hendriksen, Lars Mikkelsen, Peter Halvor Larsen, Soeren Linderoth, Mogens Mogensen
  • Patent number: 8945793
    Abstract: A ceramic anode structure obtainable by a process comprising the steps of: (a) providing a slurry by dispersing a powder of an electronically conductive phase and by adding a binder to the dispersion, in which said powder is selected from the group consisting of niobium-doped strontium titanate, vanadium-doped strontium titanate, tantalum-doped strontium titanate, and mixtures thereof, (b) sintering the slurry of step (a), (c) providing a precursor solution of ceria, said solution containing a solvent and a surfactant, (d) impregnating the resulting sintered structure of step (b) with the precursor solution of step (c), (e) subjecting the resulting structure of step (d) to calcination, and (f) conducting steps (d)-(e) at least once.
    Type: Grant
    Filed: August 27, 2008
    Date of Patent: February 3, 2015
    Assignee: Technical University of Denmark
    Inventors: Peter Blennow, Mogens Mogensen, Kent Kammer Hansen
  • Patent number: 8859116
    Abstract: A multi-layer coating for protection of metals and alloys against oxidation at high temperatures is provided. The invention utilizes a multi-layer ceramic coating on metals or alloys for increased oxidation-resistance, comprising at least two layers, wherein the first layer (3) and the second layer (4) both comprise an oxide, and wherein the first layer (3) has a tracer diffusion coefficient for cations Mm+, where M is the scale forming element of the alloy, and the second layer (4) has a tracer diffusion coefficient for oxygen ions O2? satisfying the following formula: ? ln ? ? p ? ( O 2 ) in ln ? ? p ? ( O 2 ) ex ? ( D O + m 2 ? D M ) ? ? ? ln ? ? p ? ( O 2 ) < 5 · 10 - 13 ? ? cm 2 / s wherein p(O2)in, p(O2)ex, DM and DO are as defined herein.
    Type: Grant
    Filed: April 24, 2007
    Date of Patent: October 14, 2014
    Assignee: Technical University of Denmark
    Inventors: Peter Vang Hendriksen, Lars Mikkelsen, Peter Halvor Larsen, Soeren Linderoth, Mogens Mogensen
  • Patent number: 8828196
    Abstract: The present invention provides a solid oxide cell stack, comprising: —at least two cells which each comprise a first electrode layer, an electrolyte layer, a second electrode layer, —gas passage ways, and—sealing components, wherein the sealing components comprise a glass component and a component comprising a metal oxide or metal oxide precursor, and wherein the component comprising the metal oxide or metal oxide precursor is located at least in between the glass component and a gas passage way.
    Type: Grant
    Filed: March 20, 2009
    Date of Patent: September 9, 2014
    Assignee: Technical University of Denmark
    Inventors: Nadja Lönnroth, Anne Hauch, Mogens Mogensen, Ming Chen
  • Patent number: 8802321
    Abstract: The present invention provides a graded multilayer structure, comprising a support layer (1) and at least 10 layers (2, 3) forming a graded layer, wherein each of the at least 10 layers (2, 3) is at least partially in contact with the support layer (1), wherein the at least 10 layers (2, 3) differ from each other in at least one property selected from layer composition, porosity and conductivity, and wherein the at least 10 layers (2, 3) are arranged such that the layer composition, porosity and/or conductivity horizontally to the support layer (1) forms a gradient over the total layer area.
    Type: Grant
    Filed: August 14, 2008
    Date of Patent: August 12, 2014
    Assignee: Technical University of Denmark
    Inventors: Peter Halvor Larsen, Peter Vang Hendriksen, Soren Linderoth, Mogens Mogensen
  • Patent number: 8500842
    Abstract: A cermet anode structure obtainable by a process comprising the steps of: (a) providing a slurry by dispersing a powder of an electronically conductive phase and by adding a binder to the dispersion, in which said electronically conductive phase comprises a FeCrMx alloy, wherein Mx is selected from the group consisting of Ni, Ti, Nb, Ce, Mn, Mo, W, Co, La, Y, Al, and mixtures thereof, (b) forming a metallic support of said slurry of the electronically conductive phase, (c) providing a precursor solution of ceria, said solution containing a solvent and a surfactant, (d) impregnating the structure of step (b) with the precursor solution of step (c), (e) subjecting the resulting structure of step (d) to calcination, and (f) conducting steps (d)-(e) at least once.
    Type: Grant
    Filed: August 27, 2008
    Date of Patent: August 6, 2013
    Assignee: Technical University of Denmark
    Inventors: Peter Blennow, Mogens Mogensen
  • Patent number: 8460432
    Abstract: The present invention provides a membrane, comprising a porous support layer a gas tight electronically and ionically conducting membrane layer and a catalyst layer, characterized in that the electronically and ionically conducting membrane layer is formed from a material having a crystallite structure with a crystal size of about 1 to 100 nm, and a method for producing same.
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: June 11, 2013
    Assignee: Technical University of Denmark
    Inventors: Peter Vang Hendriksen, Mogens Mogensen, Wei Guo Wang, Bjarke Thomas Dalslet
  • Publication number: 20130025292
    Abstract: A reversible SOFC monolithic stack is provided which comprises: 1) a first component which comprises at least one porous metal containing layer (1) with a combined electrolyte and sealing layer on the porous metal containing layer (1); wherein the at least one porous metal containing layer (1) hosts an electrode; 2) a second component comprising at least one porous metal containing layer (1) with a combined interconnect and sealing layer on the porous metal containing layer; wherein the at least one porous metal containing layers hosts an electrode. Further provided is a method for preparing a reversible solid oxide fuel cell stack. The obtained solid oxide fuel cell stack has improved mechanical stability and high electrical performance, while the process for obtaining same is cost effective.
    Type: Application
    Filed: July 27, 2012
    Publication date: January 31, 2013
    Applicant: TECHNICAL UNIVERSITY OF DENMARK
    Inventors: Peter Halvor Larsen, Anders Smith, Mogens Mogensen, Soeren Linderoth, Peter Vang Hendriksen
  • Patent number: 8343685
    Abstract: The present invention relates to composite material suitable for use as an electrode material in a solid oxide cell, said composite material consist of at least two non-miscible mixed ionic and electronic conductors. Further provided is a composite material suitable for use as an electrode material in a solid oxide cell, said composite material being based on (Gd1-xSrx)1-sFe1-yCoyO3-? or (Ln1-xSrx)1-sFe1-yCioyO3-?1 (s equal to 0.05 or larger) wherein Ln is a lanthanide element, Sc or Y, said composite material comprising at least two phases which are non-miscible, said composite material being obtainable by the glycine nitrate combustion method. Said composite material may be used for proving an electrode material in the form of at least a two-phase system showing a very low area specific resistance of around 0.1 ?cm2 at around 600° C.
    Type: Grant
    Filed: January 25, 2008
    Date of Patent: January 1, 2013
    Assignee: Technical University of Denmark
    Inventors: Kent Kammer Hansen, Martin Søgaard, Mogens Mogensen
  • Patent number: 8252478
    Abstract: The present invention provides a method of producing a solid oxide fuel cell, comprising the steps of: forming an anode support layer; applying an anode layer on the anode support layer; applying an electrolyte layer on the anode layer; and sintering the obtained structure; wherein the anode support layer and/or the anode layer comprises a composition comprising doped zirconia, doped ceria and/or a metal oxide with an oxygen ion or proton conductivity, NiO and at least one oxide selected from the group consisting of Al2O3, TiO2, Cr2O3, Sc2O3, VOx, TaOx, MnOx, NbOx, CaO, Bi2O3, LnOx, MgCr2O4, MgTiO3, CaAl2O4, LaAlO3, YbCrO3, ErCrO4, NiTiO3, NiCr2O4, and mixtures thereof. According to the invention, a combination of nickel coarsening prevention due to specific Ni-particle growth inhibitors, and, at the same time, a strengthening of the ceramic structure of the anode support layer and/or the anode layer is achieved.
    Type: Grant
    Filed: January 31, 2006
    Date of Patent: August 28, 2012
    Assignee: Technical University of Denmark
    Inventors: Peter Halvor Larsen, Charissa Chung, Mogens Mogensen
  • Publication number: 20120037499
    Abstract: The present invention provides a composite oxygen electrode, comprising—a porous backbone structure comprising two separate but percolating phases, the first phase being an electronic conducting phase, the second phase being an oxide ion conducting phase; and—an electrocatalytic layer on the surface of said backbone structure, wherein said electrocatalytic layer comprises first and second nanoparticles, wherein the first and second particles are randomly distributed throughout said layer, wherein the first nanoparticles are electrocatalytic active nanoparticles, and wherein the second nanoparticles are formed from an ion conducting material.
    Type: Application
    Filed: April 23, 2010
    Publication date: February 16, 2012
    Inventors: Mogens Mogensen, Per Hjalmarsson, Marie Wandel
  • Publication number: 20110198216
    Abstract: The present invention provides a solid oxide cell comprising a support layer, a first electrode layer, an electrolyte layer, and a second cathode layer, wherein at least one of the electrode layers comprises electrolyte material, a catalyst and agglomerated particles selected from the group consisting of alkali oxides, earth alkali oxides and transition metal oxides.
    Type: Application
    Filed: August 29, 2008
    Publication date: August 18, 2011
    Applicant: TECHNICAL UNIVERSITY OF DENMARK
    Inventors: Peter Halvor Larsen, Mogens Mogensen, Peter Vang Hendriksen, Søren Linderoth, Ming Chen
  • Publication number: 20110132772
    Abstract: The present invention provides a membrane, comprising a porous support layer a gas tight electronically and ionically conducting membrane layer and a catalyst layer, characterized in that the electronically and ionically conducting membrane layer is formed from a material having a crystallite structure with a crystal size of about 1 to 100 nm, and a method for producing same.
    Type: Application
    Filed: August 29, 2008
    Publication date: June 9, 2011
    Applicant: TECHNICAL UNIVERSITY OF DENMARK
    Inventors: Peter Vang Hendriksen, Mogens Mogensen, Wei Guo Wang, Bjarke Thomas Dalslet
  • Publication number: 20110100805
    Abstract: The present invention provides a solid oxide cell stack, comprising: —at least two cells which each comprise a first electrode layer (1), an electrolyte layer (2), a second electrode layer (3), —gas passage ways, and —sealing components (4), wherein the sealing components (4) comprise a glass component (4a) and a component comprising a metal oxide or metal oxide precursor (4b), and wherein the component comprising the metal oxide or metal oxide precursor (4b) is located at least in between the glass component (4a) and a gas passage way.
    Type: Application
    Filed: March 20, 2009
    Publication date: May 5, 2011
    Applicant: TECHNICAL UNIVERSITY OF DENMARK
    Inventors: Nadja Lönnroth, Anne Hauch, Mogens Mogensen, Ming Chen
  • Publication number: 20100112407
    Abstract: The present invention relates to composite material suitable for use as an electrode material in a solid oxide cell, said composite material consist of at least two non-miscible mixed ionic and electronic conductors. Further provided is a composite material suitable for use as an electrode material in a solid oxide cell, said composite material being based on (Gd1-xSrx)1-sFe1-yCoyO3-? or (Ln1-xSrx)1-sFe1-yCioyO3-?(s equal to 0.05 or larger) wherein Ln is a lanthanide element, Sc or Y, said composite material comprising at least two phases which are non-miscible, said composite material being obtainable by the glycine nitrate combustion method. Said composite material may be used for proving an electrode material in the form of at least a two-phase system showing a very low area specific resistance of around 0.1 ?cm2 at around 600° C.
    Type: Application
    Filed: January 25, 2008
    Publication date: May 6, 2010
    Applicant: TECHNICAL UNIVERSITY OF DENMARK
    Inventors: Kent Kammer Hansen, Martin Sogaard, Mogens Mogensen
  • Publication number: 20100015473
    Abstract: A multi-layer coating for protection of metals and alloys against oxidation at high temperatures in general is provided. The invention utilizes a multi-layer ceramic coating on metals or alloys for increased oxidation-resistance, comprising at least two layers, wherein the first layer (3) which faces the metal containing surface and the second layer facing the surrounding atmosphere (4) both comprise an oxide, and wherein the first layer (3) has a tracer diffusion coefficient for cations Mm+, where M is the scale forming element of the alloy, and the second layer (4) has a tracer diffusion coefficient for oxygen ions O2? satisfying the following formula: wherein p(O2)m is the oxygen partial pressure in equilibrium between the metallic sub-strate and MaOb, p(O2)ex is the oxygen partial pressure in the reaction atmosphere, DM is the tracer diffusion coefficient of the metal cations Mm+ in the first layer (3), and Do is O tracer diffusion coefficient in the second layer (4).
    Type: Application
    Filed: April 24, 2007
    Publication date: January 21, 2010
    Applicant: TECHNICAL UNIVERSITY OF DENMARK
    Inventors: Peter Vang Hendriksen, Lars Mikkelsen, Peter Halvor Larsen, Soeren Linderoth, Mogens Mogensen