Patents by Inventor Mohamed Abu-Rahma
Mohamed Abu-Rahma has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11675380Abstract: A voltage regulator circuit may generate a regulated voltage level using a voltage level of a feedback node. The regulated voltage level may be distributed, via a power distribution network, to package power supply node of a package, into which an integrated circuit has been mounted. Power switches included in the integrated circuit may couple the package power supply node to respective local power supply nodes in the integrated circuit. A particular power switch may selectively couple different ones of the local power supply nodes to the feedback node, allowing the voltage regulator circuit to compensate for reductions in the regulated voltage level due to the power distribution network, as well as adjust the regulated voltage level based on power consumptions of load circuits coupled to the local power supply nodes.Type: GrantFiled: April 7, 2022Date of Patent: June 13, 2023Assignee: Apple Inc.Inventors: Shawn Searles, Victor Zyuban, Mohamed Abu-Rahma
-
Publication number: 20220300022Abstract: A voltage regulator circuit may generate a regulated voltage level using a voltage level of a feedback node. The regulated voltage level may be distributed, via a power distribution network, to package power supply node of a package, into which an integrated circuit has been mounted. Power switches included in the integrated circuit may couple the package power supply node to respective local power supply nodes in the integrated circuit. A particular power switch may selectively couple different ones of the local power supply nodes to the feedback node, allowing the voltage regulator circuit to compensate for reductions in the regulated voltage level due to the power distribution network, as well as adjust the regulated voltage level based on power consumptions of load circuits coupled to the local power supply nodes.Type: ApplicationFiled: April 7, 2022Publication date: September 22, 2022Inventors: Shawn Searles, Victor Zyuban, Mohamed Abu-Rahma
-
Patent number: 11320849Abstract: A voltage regulator circuit may generate a regulated voltage level using a voltage level of a feedback node. The regulated voltage level may be distributed, via a power distribution network, to package power supply node of a package, into which an integrated circuit has been mounted. Power switches included in the integrated circuit may couple the package power supply node to respective local power supply nodes in the integrated circuit. A particular power switch may selectively couple different ones of the local power supply nodes to the feedback node, allowing the voltage regulator circuit to compensate for reductions in the regulated voltage level due to the power distribution network, as well as adjust the regulated voltage level based on power consumptions of load circuits coupled to the local power supply nodes.Type: GrantFiled: August 28, 2020Date of Patent: May 3, 2022Assignee: Apple Inc.Inventors: Shawn Searles, Victor Zyuban, Mohamed Abu-Rahma
-
Publication number: 20220066490Abstract: A voltage regulator circuit may generate a regulated voltage level using a voltage level of a feedback node. The regulated voltage level may be distributed, via a power distribution network, to package power supply node of a package, into which an integrated circuit has been mounted. Power switches included in the integrated circuit may couple the package power supply node to respective local power supply nodes in the integrated circuit. A particular power switch may selectively couple different ones of the local power supply nodes to the feedback node, allowing the voltage regulator circuit to compensate for reductions in the regulated voltage level due to the power distribution network, as well as adjust the regulated voltage level based on power consumptions of load circuits coupled to the local power supply nodes.Type: ApplicationFiled: August 28, 2020Publication date: March 3, 2022Inventors: Shawn Searles, Victor Zyuban, Mohamed Abu-Rahma
-
Patent number: 9865330Abstract: Stable SRAM cells utilizing Independent Gate FinFET architectures provide improvements over conventional SRAM cells in device parameters such as Read Static Noise Margin (RSNM) and Write Noise Margin (WNM). Exemplary SRAM cells comprise a pair of storage nodes, a pair of bit lines, a pair of pull-up devices, a pair of pull-down devices and a pair of pass-gate devices. A first control signal and a second control signal are configured to adjust drive strengths of the pass-gate devices, and a third control signal is configured to adjust drive strengths of the pull-up devices, wherein the first control signal is routed orthogonal to a bit line direction, and the second and third control signals are routed in a direction same as the bit line direction. RSNM and WNM are improved by adjusting drive strengths of the pull-up and pass-gate devices during read and write operations.Type: GrantFiled: November 4, 2010Date of Patent: January 9, 2018Assignee: QUALCOMM IncorporatedInventors: Seong-Ook Jung, Mingu Kang, Hyunkook Park, Seung-Chul Song, Mohamed Abu-Rahma, Beom-Mo Han, Lixin Ge, Zhongze Wang
-
Patent number: 8796777Abstract: A method includes forming a gate of a transistor within a substrate having a surface and forming a buried oxide (BOX) layer within the substrate and adjacent to the gate at a first BOX layer face. The method also includes forming a raised source-drain channel (“fin”), where at least a portion of the fin extends from the surface of the substrate, and where the fin has a first fin face adjacent a second BOX layer face of the BOX layer.Type: GrantFiled: September 2, 2009Date of Patent: August 5, 2014Assignee: QUALCOMM IncorporatedInventors: Seung-Chul Song, Mohamed Abu-Rahma, Beom-Mo Han
-
Publication number: 20120113708Abstract: Stable SRAM cells utilizing Independent Gate FinFET architectures provide improvements over conventional SRAM cells in device parameters such as Read Static Noise Margin (RSNM) and Write Noise Margin (WNM). Exemplary SRAM cells comprise a pair of storage nodes, a pair of bit lines, a pair of pull-up devices, a pair of pull-down devices and a pair of pass-gate devices. A first control signal and a second control signal are configured to adjust drive strengths of the pass-gate devices, and a third control signal is configured to adjust drive strengths of the pull-up devices, wherein the first control signal is routed orthogonal to a bit line direction, and the second and third control signals are routed in a direction same as the bit line direction. RSNM and WNM are improved by adjusting drive strengths of the pull-up and pass-gate devices during read and write operations.Type: ApplicationFiled: November 4, 2010Publication date: May 10, 2012Applicants: Industry-Academic Cooperation Foundation, Yonsei University, QUALCOMM IncorporatedInventors: Seong-Ook Jung, Mingu Kang, Hyunkook Park, Seung-Chul Song, Mohamed Abu-Rahma, Beom-Mo Han, Lixin Ge, Zhongze Wang
-
Patent number: 7929334Abstract: A method of measuring resistance of a magnetic tunnel junction (MTJ) of an MRAM memory cell includes applying a voltage of a selected level to a memory cell comprising an MTJ in series with a memory cell transistor in a conducting state. A current through the memory cell is determined. A variable voltage is applied to a replica cell not having an MTJ and comprising a replica cell transistor in a conducting state. A value of the variable voltage is determined, wherein a resulting current through the replica cell is substantially the same as the current through the memory cell. The MTJ resistance is computed by taking the difference of the memory cell voltage and the determined variable replica cell voltage and dividing the result by the determined memory cell current.Type: GrantFiled: January 29, 2009Date of Patent: April 19, 2011Assignee: QUALCOMM IncorporatedInventors: Hari Rao, Sei Seung Yoon, Xiaochun Zhu, Mohamed Abu-Rahma