Patents by Inventor Mohamed Diab

Mohamed Diab has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10327683
    Abstract: A physiological sensor has light emitting sources, each activated by addressing at least one row and at least one column of an electrical grid. The light emitting sources are capable of transmitting light of multiple wavelengths and a detector is responsive to the transmitted light after attenuation by body tissue.
    Type: Grant
    Filed: September 1, 2017
    Date of Patent: June 25, 2019
    Assignee: Cercacor Laboratories, Inc.
    Inventors: Robert Smith, David Dalke, Ammar Al-Ali, Mohamed Diab, Marcelo Lamego
  • Publication number: 20180070867
    Abstract: A physiological sensor has light emitting sources, each activated by addressing at least one row and at least one column of an electrical grid. The light emitting sources are capable of transmitting light of multiple wavelengths and a detector is responsive to the transmitted light after attenuation by body tissue.
    Type: Application
    Filed: September 1, 2017
    Publication date: March 15, 2018
    Inventors: Robert Smith, David Dalke, Ammar Al-Ali, Mohamed Diab, Marcelo Lamego
  • Publication number: 20180014752
    Abstract: Respiratory rate can be calculated from an acoustic input signal using time domain and frequency domain techniques. Confidence in the calculated respiratory rate can also be calculated using time domain and frequency domain techniques. Overall respiratory rate and confidence values can be obtained from the time and frequency domain calculations. The overall respiratory rate and confidence values can be output for presentation to a clinician.
    Type: Application
    Filed: August 4, 2017
    Publication date: January 18, 2018
    Inventors: Ammar Al-Ali, Walter M. Weber, Anmol B. Majmudar, Gilberto Sierra, Sung Uk Lee, Mohamed Diab, Valery G. Telfort, Marc Pelletier, Boris Popov
  • Patent number: 9750443
    Abstract: A physiological sensor has light emitting sources, each activated by addressing at least one row and at least one column of an electrical grid. The light emitting sources are capable of transmitting light of multiple wavelengths and a detector is responsive to the transmitted light after attenuation by body tissue.
    Type: Grant
    Filed: August 29, 2014
    Date of Patent: September 5, 2017
    Assignee: CERCACOR LABORATORIES, INC.
    Inventors: Robert Smith, David Dalke, Ammar Al-Ali, Mohamed Diab, Marcelo Lamego
  • Patent number: 9724016
    Abstract: Respiratory rate can be calculated from an acoustic input signal using time domain and frequency domain techniques. Confidence in the calculated respiratory rate can also be calculated using time domain and frequency domain techniques. Overall respiratory rate and confidence values can be obtained from the time and frequency domain calculations. The overall respiratory rate and confidence values can be output for presentation to a clinician.
    Type: Grant
    Filed: October 15, 2010
    Date of Patent: August 8, 2017
    Assignee: MASIMO CORP.
    Inventors: Ammar Al-Ali, Walter M. Weber, Anmol B. Majmudar, Gilberto Sierra, Sung Uk Lee, Mohamed Diab, Valery G. Telfort, Marc Pelletier, Boris Popov
  • Patent number: 9341565
    Abstract: A physiological monitor for determining blood oxygen saturation of a medical patient includes a sensor, a signal processor and a display. The sensor includes at least three light emitting diodes. Each light emitting diode is adapted to emit light of a different wavelength. The sensor also includes a detector, where the detector is adapted to receive light from the three light emitting diodes after being attenuated by tissue. The detector generates an output signal based at least in part upon the received light. The signal processor determines blood oxygen saturation based at least upon the output signal, and the display provides an indication of the blood oxygen saturation.
    Type: Grant
    Filed: March 28, 2011
    Date of Patent: May 17, 2016
    Assignee: Masimo Corporation
    Inventors: Marcelo M. Lamego, Mohamed Diab, Walter M. Weber, Ammar Al-Ali, Massi Joe E. Kiani
  • Patent number: 9339220
    Abstract: A physiological monitor for determining blood oxygen saturation of a medical patient includes a sensor, a signal processor and a display. The sensor includes at least three light emitting diodes. Each light emitting diode is adapted to emit light of a different wavelength. The sensor also includes a detector, where the detector is adapted to receive light from the three light emitting diodes after being attenuated by tissue. The detector generates an output signal based at least in part upon the received light. The signal processor determines blood oxygen saturation based at least upon the output signal, and the display provides an indication of the blood oxygen saturation.
    Type: Grant
    Filed: April 12, 2013
    Date of Patent: May 17, 2016
    Assignee: MASIMO CORPORATION
    Inventors: Marcelo M. Lamego, Mohamed Diab, Walter M. Weber, Ammar Al-Ali, Joe Kiani
  • Publication number: 20150133755
    Abstract: A physiological sensor has light emitting sources, each activated by addressing at least one row and at least one column of an electrical grid. The light emitting sources are capable of transmitting light of multiple wavelengths and a detector is responsive to the transmitted light after attenuation by body tissue.
    Type: Application
    Filed: August 29, 2014
    Publication date: May 14, 2015
    Inventors: Robert Smith, David Dalke, Ammar Al-Ali, Mohamed Diab, Marcelo Lamego
  • Patent number: 8929964
    Abstract: A physiological sensor has light sources arranged in one or more rows and one or more columns. Each light source is activated by addressing at least one row and at least one column. The light sources are capable of transmitting light of multiple wavelengths and a detector is responsive to the transmitted light after attenuation by body tissue.
    Type: Grant
    Filed: July 8, 2013
    Date of Patent: January 6, 2015
    Assignee: Cercacor Laboratories, Inc.
    Inventors: Ammar Al-Ali, Robert Smith, David Dalke, Mohamed Diab, Marcelo Lamego
  • Patent number: 8849365
    Abstract: A physiological sensor has light emitting sources, each activated by addressing at least one row and at least one column of an electrical grid. The light emitting sources are capable of transmitting light of multiple wavelengths and a detector is responsive to the transmitted light after attenuation by body tissue.
    Type: Grant
    Filed: February 25, 2013
    Date of Patent: September 30, 2014
    Assignee: Cercacor Laboratories, Inc.
    Inventors: Robert Smith, David Dalke, Ammar Al-Ali, Mohamed Diab, Marcelo Lamego
  • Patent number: 8718735
    Abstract: Confidence in a physiological parameter is measured from physiological data responsive to the intensity of multiple wavelengths of optical radiation after tissue attenuation. The physiological parameter is estimated based upon the physiological data. Reference data clusters are stored according to known values of the physiological parameter. At least one of the data clusters is selected according to the estimated physiological parameter. The confidence measure is determined from a comparison of the selected data clusters and the physiological data.
    Type: Grant
    Filed: June 3, 2011
    Date of Patent: May 6, 2014
    Assignee: Cercacor Laboratories, Inc.
    Inventors: Marcelo Lamego, Mohamed Diab, Ammar Al-Ali
  • Patent number: 8670814
    Abstract: An optical probe, which is particularly suited to reduce noise in measurements taken on an easily compressible material, such as a finger, a toe, a forehead, an earlobe, or a lip, measures characteristics of the material. A neonatal and adult disposable embodiment of the probe include adhesive coated surfaces to securely affix the probe onto the patient. In addition, the surface of the probe is specially constructed to reduce the effect of ambient noise.
    Type: Grant
    Filed: January 27, 2009
    Date of Patent: March 11, 2014
    Assignee: Masimo Corporation
    Inventors: Mohamed Diab, Esmaiel Kiani-Azarbayjany, David R. Tobler, Thomas J. Gerhardt, Eugene E. Mason, Mike A. Mills
  • Publication number: 20130317327
    Abstract: A physiological sensor has light sources arranged in one or more rows and one or more columns. Each light source is activated by addressing at least one row and at least one column. The light sources are capable of transmitting light of multiple wavelengths and a detector is responsive to the transmitted light after attenuation by body tissue.
    Type: Application
    Filed: July 8, 2013
    Publication date: November 28, 2013
    Applicant: CERCACOR LABORATORIES, INC.
    Inventors: Ammar Al-Ali, Robert Smith, David Dalke, Mohamed Diab, Marcelo Lamego
  • Patent number: 8560032
    Abstract: Embodiments of the present disclosure include a handheld multi-parameter patient monitor capable of determining multiple physiological parameters from the output of a light sensitive detector capable of detecting light attenuated by body tissue. For example, in an embodiment, the monitor is capable of advantageously and accurately displaying one or more of pulse rate, plethysmograph data, perfusion quality, signal confidence, and values of blood constituents in body tissue, including for example, arterial carbon monoxide saturation (“HbCO”), methemoglobin saturation (“HbMet”), total hemoglobin (“Hbt”), arterial oxygen saturation (“SpO2”), fractional arterial oxygen saturation (“SpaO2”), or the like. The monitor can determine which a plurality of light emitting sources and which of a plurality of parameters to measure based on the signal quality and resources available.
    Type: Grant
    Filed: May 22, 2012
    Date of Patent: October 15, 2013
    Assignee: Cercacor Laboratories, Inc.
    Inventors: Ammar Al-Ali, Joe E. Kiani, Mohamed Diab, Roger Wu, Rick Fishel
  • Patent number: 8483787
    Abstract: A physiological sensor includes an electrical grid to activate one or more light emitters by addressing at least one row conductor and at least one column conductor. Each light emitter includes a positive terminal and a negative terminal. The physiological sensor includes a first light emitter and a second light emitter. A first contact is communicatively coupled with the positive terminal of the first light emitter, the negative terminal of the second light emitter, a first row conductor, and a first column conductor. A second contact is communicatively coupled with the negative terminal of the first light emitter, the positive terminal of the second light emitter, a second row conductor, and a second column conductor. The first light emitter is activated by addressing the first row conductor and the second column conductor. The second light emitter is activated by addressing the second row conductor and the first column conductor.
    Type: Grant
    Filed: October 31, 2011
    Date of Patent: July 9, 2013
    Assignee: Cercacor Laboratories, Inc.
    Inventors: Ammar Al-Ali, Robert Smith, David Dalke, Mohamed Diab, Marcelo Lamego
  • Patent number: 8423106
    Abstract: A physiological monitor for determining blood oxygen saturation of a medical patient includes a sensor, a signal processor and a display. The sensor includes at least three light emitting diodes. Each light emitting diode is adapted to emit light of a different wavelength. The sensor also includes a detector, where the detector is adapted to receive light from the three light emitting diodes after being attenuated by tissue. The detector generates an output signal based at least in part upon the received light. The signal processor determines blood oxygen saturation based at least upon the output signal, and the display provides an indication of the blood oxygen saturation.
    Type: Grant
    Filed: March 10, 2008
    Date of Patent: April 16, 2013
    Assignee: Cercacor Laboratories, Inc.
    Inventors: Marcelo M. Lamego, Mohamed Diab, Walter M. Weber, Ammar Al-Ali, Joe Kiani
  • Patent number: 8385996
    Abstract: A physiological sensor is adapted to removably attach an emitter assembly and a detector assembly to a fingertip. The emitter assembly is adapted to transmit optical radiation having multiple wavelengths into fingertip tissue. The detector assembly is adapted to receive the optical radiation after attenuation by the fingertip tissue. The sensor has a first shell and a second shell hinged to the first shell. A spring is disposed between the shells and urges the shells together. An emitter pad is fixedly attached to the first shell and configured to retain the emitter assembly. A detector pad is fixedly attached to the second shell and configured to retain the detector assembly. A detector aperture is defined within the detector pad and adapted to pass optical radiation to the detector assembly. A contour is defined along the detector pad and generally shaped to conform to a fingertip positioned over the detector aperture.
    Type: Grant
    Filed: April 13, 2009
    Date of Patent: February 26, 2013
    Assignee: Cercacor Laboratories, Inc.
    Inventors: Robert Smith, David Dalke, Ammar Al-Ali, Mohamed Diab, Marcelo Lamego
  • Patent number: 8385995
    Abstract: A physiological parameter tracking system has a reference parameter calculator configured to provide a reference parameter responsive to a physiological signal input. A physiological measurement output is a physiological parameter derived from the physiological signal input during a favorable condition and an estimate of the physiological parameter according to the reference parameter during an unfavorable condition.
    Type: Grant
    Filed: August 6, 2007
    Date of Patent: February 26, 2013
    Assignee: Masimo Corporation
    Inventors: Ammar Al-Ali, Mohamed Diab, Walter M. Weber
  • Publication number: 20120232363
    Abstract: Embodiments of the present disclosure include a handheld multi-parameter patient monitor capable of determining multiple physiological parameters from the output of a light sensitive detector capable of detecting light attenuated by body tissue. For example, in an embodiment, the monitor is capable of advantageously and accurately displaying one or more of pulse rate, plethysmograph data, perfusion quality, signal confidence, and values of blood constituents in body tissue, including for example, arterial carbon monoxide saturation (“HbCO”), methemoglobin saturation (“HbMet”), total hemoglobin (“Hbt”), arterial oxygen saturation (“SpO2”), fractional arterial oxygen saturation (“SpaO2”), or the like. The monitor can determine which a plurality of light emitting sources and which of a plurality of parameters to measure based on the signal quality and resources available.
    Type: Application
    Filed: May 22, 2012
    Publication date: September 13, 2012
    Applicant: CERCACOR LABORATORIES, INC.
    Inventors: Ammar Al-Ali, Joe E. Kiani, Mohamed Diab, Roger Wu, Rick Fishel
  • Publication number: 20120232359
    Abstract: Embodiments of the present disclosure include a handheld multi-parameter patient monitor capable of determining multiple physiological parameters from the output of a light sensitive detector capable of detecting light attenuated by body tissue. For example, in an embodiment, the monitor is capable of advantageously and accurately displaying one or more of pulse rate, plethysmograph data, perfusion quality, signal confidence, and values of blood constituents in body tissue, including for example, arterial carbon monoxide saturation (“HbCO”), methemoglobin saturation (“HbMet”), total hemoglobin (“Hbt”), arterial oxygen saturation (“SpO2”), fractional arterial oxygen saturation (“SpaO2”), or the like. In an embodiment, the monitor advantageously includes a plurality of display modes enabling more parameter data to be displayed than the available physical display real estate.
    Type: Application
    Filed: May 22, 2012
    Publication date: September 13, 2012
    Applicant: CERCACOR LABORATORIES, INC.
    Inventors: Ammar Al-Ali, Joe Kiani, Mohamed Diab, Greg Olsen, Roger Wu, Rick Fishel