Patents by Inventor Mohamed El Said

Mohamed El Said has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10537106
    Abstract: A gold nanoparticle-based assay for the detection of a target molecule, such as Hepatitis C Virus (HCV) RNA in serum samples, that uses positively charged gold nanoparticles (AuNPs) in solution based format. The assay has been tested on 74 serum clinical samples suspected of containing HCV RNA, with 48 and 38 positive and negative samples respectively. The developed assay has a specificity and sensitivity of 96.5% and 92.6% respectively. The results obtained were confirmed by Real-Time PCR, and a concordance of 100% for the negative samples and 89% for the positive samples has been obtained between the Real-Time PCR and the developed AuNPs based assay. Also, a purification method for the HCV RNA has been developed using HCV RNA specific probe conjugated to homemade silica nanoparticles. These silica nanoparticles have been synthesized by modified Stober method. This purification method enhanced the specificity of the developed AuNPs assay.
    Type: Grant
    Filed: August 4, 2016
    Date of Patent: January 21, 2020
    Assignee: AMERICAN UNIVERSITY IN CAIRO (AUC)
    Inventors: Hassan Mohamed El-Said Azzazy, Sherif Mohamed Shawky Abduo, Kamel Abdelmenem Mohamed Eid, Bassem Samy Shenouda Guirgis
  • Publication number: 20190090491
    Abstract: A gold nanoparticle-based assay for the detection of a target molecule, such as Hepatitis C Virus (HCV) RNA in serum samples, that uses positively charged gold nanoparticles (AuNPs) in solution based format. The assay has been tested on 74 serum clinical samples suspected of containing HCV RNA, with 48 and 38 positive and negative samples respectively. The developed assay has a specificity and sensitivity of 96.5% and 92.6% respectively. The results obtained were confirmed by Real-Time PCR, and a concordance of 100% for the negative samples and 89% for the positive samples has been obtained between the Real-Time PCR and the developed AuNPs based assay. Also, a purification method for the HCV RNA has been developed using HCV RNA specific probe conjugated to homemade silica nanoparticles. These silica nanoparticles have been synthesized by modified Stober method. This purification method enhanced the specificity of the developed AuNPs assay.
    Type: Application
    Filed: August 4, 2016
    Publication date: March 28, 2019
    Applicant: AMERICAN UNIVERSITY IN CAIRO (AUC)
    Inventors: Hassan Mohamed El-Said AZZAZY, Sherif Mohamed SHAWKY ABDUO, Kamel Abdelmenem Mohamed EID, Bassem Samy Shenouda GUIRGIS
  • Patent number: 9926610
    Abstract: A gold nanoparticle-based colorimetric assay kit for nucleic acids from viral, bacterial and other microorganisms that detects unamplified or amplified polynucleotides in clinical specimens using unmodified AuNPs and oligotargeter polynucleotides that bind to a pathogen's nucleic acids. A method for detecting a pathogen comprising contacting a sample suspected of containing microbes with a polynucleotide that binds to pathogen nucleic acid and with gold nanoparticles, detecting the aggregation of nanoparticles, and detecting pathogen polynucleotides in the sample when the nanoparticles aggregate (solution color becomes blue) in comparison with a control or a negative sample not containing the virus when nanoparticles do not aggregate (solution color remains red).
    Type: Grant
    Filed: June 2, 2014
    Date of Patent: March 27, 2018
    Assignee: AMERICAN UNIVERSITY IN CAIRO
    Inventors: Hassan Mohamed El-Said Azzazy, Tamer Mohamed Samir, Sherif Mohamed Shawky
  • Patent number: 9303292
    Abstract: A gold nanoparticle-based colorimetric assay kit for hepatitis C virus RNA that detects unamplified HCV RNA in clinical specimens using unmodified AuNPs and oligotargeter polynucleotides that bind to HCV RNA. A method for detecting hepatitis C virus comprising contacting a sample suspected of containing hepatitis C virus with a polynucleotide that binds to hepatitis C virus RNA and with gold nanoparticles, detecting the aggregation of nanoparticles, and detecting hepatitis C virus in the sample when the nanoparticles aggregate (solution color becomes blue) in comparison with a control or a negative sample not containing the virus when nanoparticles do not aggregate (solution color remains red).
    Type: Grant
    Filed: January 10, 2011
    Date of Patent: April 5, 2016
    Assignee: The American University of Cairo
    Inventors: Sherif Mohamed Shawky Abduo, Hassan Mohamed El-Said Azzay El-Badawy
  • Publication number: 20150017258
    Abstract: A gold nanoparticle-based assay for the detection of a target molecule, such as Hepatitis C Virus (HCV) RNA in serum samples, that uses positively charged gold nanoparticles (AuNPs) in solution based format. The assay has been tested on 74 serum clinical samples suspected of containing HCV RNA, with 48 and 38 positive and negative samples respectively. The developed assay has a specificity and sensitivity of 96.5% and 92.6% respectively. The results obtained were confirmed by Real-Time PCR, and a concordance of 100% for the negative samples and 89% for the positive samples has been obtained between the Real-Time PCR and the developed AuNPs based assay. Also, a purification method for the HCV RNA has been developed using HCV RNA specific probe conjugated to homemade silica nanoparticles. These silica nanoparticles have been synthesized by modified Stober method. This purification method enhanced the specificity of the developed AuNPs assay.
    Type: Application
    Filed: January 31, 2013
    Publication date: January 15, 2015
    Applicant: AMERICAN UNIVERSITY OF CAIRO (AUC)
    Inventors: Hassan Mohamed El-Said Azzazy, Sherif Mohamed Shawky Abduo, Kamel Abdelmenem Mohamed Eid, Bassem Samy Shenouda Guirgis
  • Publication number: 20140356859
    Abstract: A gold nanoparticle-based colorimetric assay kit for nucleic acids from viral, bacterial and other microorganisms that detects unamplified or amplified polynucleotides in clinical specimens using unmodified AuNPs and oligotargeter polynucleotides that bind to a pathogen's nucleic acids. A method for detecting a pathogen comprising contacting a sample suspected of containing microbes with a polynucleotide that binds to pathogen nucleic acid and with gold nanoparticles, detecting the aggregation of nanoparticles, and detecting pathogen polynucleotides in the sample when the nanoparticles aggregate (solution color becomes blue) in comparison with a control or a negative sample not containing the virus when nanoparticles do not aggregate (solution color remains red).
    Type: Application
    Filed: June 2, 2014
    Publication date: December 4, 2014
    Applicant: American University of Cairo (AUC)
    Inventors: Hassan Mohamed El-Said AZZAZY, Tamer Mohamed Samir, Sherif Mohamed Shawky
  • Publication number: 20130236880
    Abstract: A gold nanoparticle-based colorimetric assay kit for hepatitis C virus RNA that detects unamplified HCV RNA in clinical specimens using unmodified AuNPs and oligotargeter polynucleotides that bind to HCV RNA. A method for detecting hepatitis C virus comprising contacting a sample suspected of containing hepatitis C virus with a polynucleotide that binds to hepatitis C virus RNA and with gold nanoparticles, detecting the aggregation of nanoparticles, and detecting hepatitis C virus in the sample when the nanoparticles aggregate (solution color becomes blue) in comparison with a control or a negative sample not containing the virus when nanoparticles do not aggregate (solution color remains red).
    Type: Application
    Filed: January 10, 2011
    Publication date: September 12, 2013
    Applicant: American University of Cairo
    Inventors: Sherif Mohamed Shawky Abduo, Hassan Mohamed El-Said Azzazy El-Badawy
  • Patent number: 8145155
    Abstract: A passive mixer include a switching architecture configured to generate differential in-phase (I) and differential quadrature-phase (Q) signals using differential components of the in-phase (I) and quadrature-phase (Q) signals operating on transitions of an approximate 25% duty cycle signal.
    Type: Grant
    Filed: June 24, 2008
    Date of Patent: March 27, 2012
    Assignee: Mediatek, Inc.
    Inventors: Rajasekhar Pullela, Mohamed El Said
  • Publication number: 20080284487
    Abstract: A passive mixer include a switching architecture configured to generate differential in-phase (I) and differential quadrature-phase (Q) signals using differential components of the in-phase (I) and quadrature-phase (Q) signals operating on transitions of an approximate 25% duty cycle signal.
    Type: Application
    Filed: June 24, 2008
    Publication date: November 20, 2008
    Inventors: Rajasekhar Pullela, Mohamed El Said