Patents by Inventor Mohamed F. A. Aboud

Mohamed F. A. Aboud has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8623220
    Abstract: A simple, room-temperature method of producing CuO-doped zinc oxide nanoparticles was established by reacting zinc nitrate hexahydrate, copper nitrate trihydrate and cyclohexylamine (CHA) at room temperature. These nanoparticles may be used for photocatalytic degradation of cyanide in aqueous solutions. The degradation of cyanide is effective because electrons transfer from the p-type copper oxide to the n-type zinc oxide.
    Type: Grant
    Filed: July 13, 2012
    Date of Patent: January 7, 2014
    Assignee: King Abdulaziz City for Science and Technology (KACST)
    Inventors: Abdulaziz A Bagabas, Ahmed S. Alshammari, Mohamed F. Aboud, Mohamed Mokhtar Mohamed Mostafa, Emad Addurihem, Zeid A. Al-Othman, Musaed A Alangari
  • Publication number: 20130168328
    Abstract: A simple, room-temperature method of producing CuO-doped zinc oxide nanoparticles was established by reacting zinc nitrate hexahydrate, copper nitrate trihydrate and cyclohexylamine (CHA) at room temperature. These nanoparticles may be used for photocatalytic degradation of cyanide in aqueous solutions. The degradation of cyanide is effective because electrons transfer from the p-type copper oxide to the n-type zinc oxide.
    Type: Application
    Filed: July 13, 2012
    Publication date: July 4, 2013
    Applicant: King Abdulaziz City for Science and Technology (KACST)
    Inventors: ABDULAZIZ A. BAGABAS, Ahmed S. ALSHAMMARI, Mohamed F. Aboud, Mohamed Mokhtar Mohamed Mostafa, EMAD ADDURIHEM, Zeid A. AL-Othman, MUSAED A. ALANGARI
  • Patent number: 8361324
    Abstract: A simple, room-temperature process of using zinc oxide nanoparticles was established by reacting zinc nitrate hexahydrate and cyclohexylamine (CHA) in either aqueous or ethanol medium. Particles of polyhedra morphology were obtained for zinc oxide, prepared in EtOH (ZnOE) and zinc oxide prepared in water (ZnOW). The results indicate that there are significant morphological differences between ZnOE and ZnOW. ZnOE showed a regular polyhedral shape, while spherical and chunky particles were observed for ZnOW. The morphology was crucial in enhancing the cyanide ion photocatalytic degradation efficiency of ZnOE by a factor of 1.5 in comparison to the efficiency of ZnOW at equivalent loading of 0.0166 ZnO nanoparticles wt %.
    Type: Grant
    Filed: July 30, 2012
    Date of Patent: January 29, 2013
    Assignee: King Abdulaziz City for Science and Technology (KACST)
    Inventors: Abdulaziz A Bagabas, Reda M. Mohamed, Mohamed F. A. Aboud, Mohamed Mokhtar M. Mostafa, Ahmad S. Alshammari, Zeid A. AL-Othman
  • Patent number: 8362094
    Abstract: A simple, room-temperature method of producing zinc oxide nanoparticles was established by reacting zinc nitrate hexahydrate and cyclohexylamine (CHA) in either aqueous or ethanolic medium. Particles of polyhedra morphology were obtained for zinc oxide, prepared in EtOH (ZnOE) and zinc oxide prepared in water (ZnOW). The results indicate that there are significant morphological differences between ZnOE and ZnOW. ZnOE showed a regular polyhedral shape, while spherical and chunky particles were observed for ZnOW. The morphology was crucial in enhancing the cyanide ion photocatalytic degradation efficiency of ZnOE by a factor of 1.5 in comparison to the efficiency of ZnOW at equivalent loading of 0.0166 ZnO nanoparticles wt %.
    Type: Grant
    Filed: July 30, 2012
    Date of Patent: January 29, 2013
    Assignee: King Abdulaziz City for Science and Technology (KACST)
    Inventors: Abdulaziz A Bagabas, Reda M. Mohamed, Mohamed F. A. Aboud, Mohamed Mokhtar M. Mostafa, Ahmad S. Alshammari, Zeid A. Al-Othman
  • Patent number: 8252256
    Abstract: A simple, room-temperature method of producing zinc oxide nanoparticles was established by reacting zinc nitrate hexahydrate and cyclohexylamine (CHA) in either aqueous or EtOHic medium. Particles of polyhedra morphology were obtained for zinc oxide, prepared in EtOH (ZnOE), while an irregular spherical morphology, mixed with some chunky particles forzinc oxide prepared in water (ZnOW). The results indicate that there are significant morphological differences between ZnOE and ZnOW. ZnOE showed a regular polyhedral shape, while spherical and chunky particles were observed for ZnOW. The morphology was crucial in enhancing the cyanide ion photocatalytic degradation efficiency of ZnOE by a factor of 1.5 in comparison to the efficiency of ZnOW at equivalent loading of 0.02 ZnO nanoparticles wt %. Increasing the loading wt % of ZnOE from 0.01 to 0.07 led to an increase in the photocatalytic degradation efficiency from 67% to 90% after 45 minutes and a doubling of the first-order rate constant (k).
    Type: Grant
    Filed: January 1, 2012
    Date of Patent: August 28, 2012
    Assignee: King Abdulaziz City for Science and Technology (KACST)
    Inventors: Abdulaziz A Bagabas, Reda M. Mohamed, Mohamed F. A. Aboud, Mohamed Mokhtar M. Mostafa, Ahmad S. Alshammari, Zeid A. Al-Othman
  • Publication number: 20120097522
    Abstract: A simple, room-temperature method of producing zinc oxide nanoparticles was established by reacting zinc nitrate hexahydrate and cyclohexylamine (CHA) in either aqueous or EtOHic medium. Particles of polyhedra morphology were obtained for zinc oxide, prepared in EtOH (ZnOE), while an irregular spherical morphology, mixed with some chunky particles forzinc oxide prepared in water (ZnOW). The results indicate that there are significant morphological differences between ZnOE and ZnOW. ZnOE showed a regular polyhedral shape, while spherical and chunky particles were observed for ZnOW. The morphology was crucial in enhancing the cyanide ion photocatalytic degradation efficiency of ZnOE by a factor of 1.5 in comparison to the efficiency of ZnOW at equivalent loading of 0.02 ZnO nanoparticles wt %. Increasing the loading wt % of ZnOE from 0.01 to 0.07 led to an increase in the photocatalytic degradation efficiency from 67% to 90% after 45 minutes and a doubling of the first-order rate constant (k).
    Type: Application
    Filed: January 1, 2012
    Publication date: April 26, 2012
    Applicant: King Abdulaziz City for Science and Technology(KACST)
    Inventors: Abdulaziz A. Bagabas, Reda M. Mohamed, Mohamed F. A. Aboud, Mohamed Mokhtar M. Mostafa, Ahmad S. Alshammari, Zeid A. AL-Othman