Patents by Inventor Mohamed Hassan Ahmed Hassan WAHBA

Mohamed Hassan Ahmed Hassan WAHBA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240062589
    Abstract: A vehicle data processing system receives a set of data logged, during operation of each of a fleet of vehicles, by a data logger communicatively coupled to a controller area network (CAN) bus in each of the vehicles. The set of logged data can include a plurality of measurements generated by a sensor configured to transmit the measurements across the CAN bus, and can be received from a storage device to which the set of logged data was uploaded after the vehicle completed one or more trips. The system processes the logged data using a set of alerting rules. When a criterion in the set of alerting rules is satisfied by the set of logged data, the system outputs an alert.
    Type: Application
    Filed: August 15, 2023
    Publication date: February 22, 2024
    Inventors: Jinghui SONG, Yijing LI, Mohamed Hassan Ahmed Hassan Wahba, Haimo BI, Yu-Ju HSU, Xiaoling HAN
  • Publication number: 20230347914
    Abstract: Techniques are described to enable a vehicle, such as an autonomous vehicle, to steer and/or apply brakes on a road when a failure condition occurs. An example method for autonomous driving operation includes receiving a reduced set of location information that describes a location of the autonomous vehicle on a road; receiving a reduced set of trajectory information where the autonomous vehicle is expected to be driven; determining a driving path information where the autonomous vehicle is expected to be driven; and in response to determining an occurrence of a fault condition: sending a first instruction to cause the autonomous vehicle to steer the autonomous vehicle using at least the driving path information and the reduced set of location information, and sending a second instruction to cause the autonomous vehicle to apply brakes.
    Type: Application
    Filed: July 7, 2023
    Publication date: November 2, 2023
    Inventors: Mohamed Hassan Ahmed Hassan WAHBA, Yu-Ju HSU, Zehua HUANG, Xiaoling HAN
  • Publication number: 20230311596
    Abstract: Techniques are described for measuring angle and/or orientation of a rear drivable section (e.g., a trailer unit of a semi-trailer truck) relative to a front drivable section (e.g., a tractor unit of the semi-trailer truck) using an example rotary encoder assembly. The example rotary encoder assembly comprises a base surface; a housing that includes a second end that is connected to the base surface and a first end that is at least partially open and is coupled to a housing cap; and a rotary encoder that is located in the housing in between the base surface and the housing cap, where the rotary encoder includes a rotatable shaft that protrudes from a first hole located in the housing cap, and where a top of the rotatable shaft located away from the rotary encoder is coupled to magnet(s).
    Type: Application
    Filed: June 5, 2023
    Publication date: October 5, 2023
    Inventors: Mohamed Hassan Ahmed Hassan WAHBA, Juexiao NING, Xiaoling HAN
  • Patent number: 11724709
    Abstract: Techniques are described to enable a vehicle, such as an autonomous vehicle, to steer and/or apply brakes on a road when a failure condition occurs. An example method for autonomous driving operation includes receiving a reduced set of location information that describes a location of the autonomous vehicle on a road; receiving a reduced set of trajectory information where the autonomous vehicle is expected to be driven; determining a driving path information where the autonomous vehicle is expected to be driven; and in response to determining an occurrence of a fault condition: sending a first instruction to cause the autonomous vehicle to steer the autonomous vehicle using at least the driving path information and the reduced set of location information, and sending a second instruction to cause the autonomous vehicle to apply brakes.
    Type: Grant
    Filed: July 22, 2021
    Date of Patent: August 15, 2023
    Assignee: TUSIMPLE, INC.
    Inventors: Mohamed Hassan Ahmed Hassan Wahba, Yu-Ju Hsu, Zehua Huang, Xiaoling Han
  • Patent number: 11701931
    Abstract: Techniques are described for measuring angle and/or orientation of a rear drivable section (e.g., a trailer unit of a semi-trailer truck) relative to a front drivable section (e.g., a tractor unit of the semi-trailer truck) using an example rotary encoder assembly. The example rotary encoder assembly comprises a base surface; a housing that includes a second end that is connected to the base surface and a first end that is at least partially open and is coupled to a housing cap; and a rotary encoder that is located in the housing in between the base surface and the housing cap, where the rotary encoder includes a rotatable shaft that protrudes from a first hole located in the housing cap, and where a top of the rotatable shaft located away from the rotary encoder is coupled to magnet(s).
    Type: Grant
    Filed: June 14, 2021
    Date of Patent: July 18, 2023
    Assignee: TUSIMPLE, INC.
    Inventors: Mohamed Hassan Ahmed Hassan Wahba, Juexiao Ning, Xiaoling Han
  • Publication number: 20230159057
    Abstract: Devices, systems, and methods for a vehicular safety system in autonomous vehicles are described. An example method for safely controlling a vehicle includes selecting, based on a first control command from a first vehicle control unit, an operating mode of the vehicle, and transmitting, based on the selecting, the operating mode to an autonomous driving system, wherein the first control command is generated based on input from a first plurality of sensors, and wherein the operating mode corresponds to one of (a) a default operating mode, (b) a minimal risk condition mode of a first type that configures the vehicle to pull over to a nearest pre-designated safety location, (c) a minimal risk condition mode of a second type that configures the vehicle to immediately stop in a current lane, or (d) a minimal risk condition mode of a third type that configures the vehicle to come to a gentle stop.
    Type: Application
    Filed: January 8, 2023
    Publication date: May 25, 2023
    Inventors: Xiaoling HAN, Yu-Ju HSU, Mohamed Hassan Ahmed Hassan WAHBA, Kun ZHANG, Zehua HUANG, Qiong XU, Zhujia SHI, Yicai JIANG, Junjun XIN
  • Publication number: 20230027572
    Abstract: Techniques are described to enable a vehicle, such as an autonomous vehicle, to steer and/or apply brakes on a road when a failure condition occurs. An example method for autonomous driving operation includes receiving a reduced set of location information that describes a location of the autonomous vehicle on a road; receiving a reduced set of trajectory information where the autonomous vehicle is expected to be driven; determining a driving path information where the autonomous vehicle is expected to be driven; and in response to determining an occurrence of a fault condition: sending a first instruction to cause the autonomous vehicle to steer the autonomous vehicle using at least the driving path information and the reduced set of location information, and sending a second instruction to cause the autonomous vehicle to apply brakes.
    Type: Application
    Filed: July 22, 2021
    Publication date: January 26, 2023
    Inventors: Mohamed Hassan Ahmed Hassan WAHBA, Yu-Ju HSU, Zehua HUANG, Xiaoling HAN
  • Patent number: 11554793
    Abstract: Devices, systems, and methods for a vehicular safety system in autonomous vehicles are described. An example method for safely controlling a vehicle includes selecting, based on a first control command from a first vehicle control unit, an operating mode of the vehicle, and transmitting, based on the selecting, the operating mode to an autonomous driving system, wherein the first control command is generated based on input from a first plurality of sensors, and wherein the operating mode corresponds to one of (a) a default operating mode, (b) a minimal risk condition mode of a first type that configures the vehicle to pull over to a nearest pre-designated safety location, (c) a minimal risk condition mode of a second type that configures the vehicle to immediately stop in a current lane, or (d) a minimal risk condition mode of a third type that configures the vehicle to come to a gentle stop.
    Type: Grant
    Filed: October 26, 2020
    Date of Patent: January 17, 2023
    Assignee: TUSIMPLE, INC.
    Inventors: Xiaoling Han, Yu-Ju Hsu, Mohamed Hassan Ahmed Hassan Wahba, Kun Zhang, Zehua Huang, Qiong Xu, Zhujia Shi, Yicai Jiang, Junjun Xin
  • Publication number: 20220126872
    Abstract: Devices, systems, and methods for a vehicular safety system in autonomous vehicles are described. An example method for safely controlling a vehicle includes selecting, based on a first control command from a first vehicle control unit, an operating mode of the vehicle, and transmitting, based on the selecting, the operating mode to an autonomous driving system, wherein the first control command is generated based on input from a first plurality of sensors, and wherein the operating mode corresponds to one of (a) a default operating mode, (b) a minimal risk condition mode of a first type that configures the vehicle to pull over to a nearest pre-designated safety location, (c) a minimal risk condition mode of a second type that configures the vehicle to immediately stop in a current lane, or (d) a minimal risk condition mode of a third type that configures the vehicle to come to a gentle stop.
    Type: Application
    Filed: October 26, 2020
    Publication date: April 28, 2022
    Inventors: Xiaoling HAN, Yu-Ju HSU, Mohamed Hassan Ahmed Hassan WAHBA, Kun ZHANG, Zehua HUANG, Qiong XU, Zhujia SHI, Yicai JIANG, Junjun XIN
  • Publication number: 20210394570
    Abstract: Techniques are described for measuring angle and/or orientation of a rear drivable section (e.g., a trailer unit of a semi-trailer truck) relative to a front drivable section (e.g., a tractor unit of the semi-trailer truck) using an example rotary encoder assembly. The example rotary encoder assembly comprises a base surface; a housing that includes a second end that is connected to the base surface and a first end that is at least partially open and is coupled to a housing cap; and a rotary encoder that is located in the housing in between the base surface and the housing cap, where the rotary encoder includes a rotatable shaft that protrudes from a first hole located in the housing cap, and where a top of the rotatable shaft located away from the rotary encoder is coupled to magnet(s).
    Type: Application
    Filed: June 14, 2021
    Publication date: December 23, 2021
    Inventors: Mohamed Hassan Ahmed Hassan WAHBA, Juexiao NING, Xiaoling HAN